[1] Baishya, K. K., Biswas, A.:
Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection. Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 12 (2019), 233-246.
DOI 10.31926/but.mif.2019.12.61.2.4 |
MR 4059157
[2] Biswas, A., Baishya, K. K.:
A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds. Sci. Stud. Res., Ser. Math. Inform. 29 (2019), 59-72.
MR 4089056
[4] Chaubey, S. K., Ojha, R. H.:
On the $m$-projective curvature tensor of a Kenmotsu manifold. Differ. Geom. Dyn. Syst. 12 (2010), 52-60.
MR 2606546 |
Zbl 1200.53028
[5] Chaubey, S. K., Prakash, S., Nivas, R.:
Some properties of $m$-projective curvature tensor in Kenmotsu manifolds. Bull. Math. Anal. Appl. 4 (2012), 48-56.
MR 2989709 |
Zbl 1314.53053
[6] Das, A., Mandal, A.:
Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection. Aligarh Bull. Math. 39 (2020), 47-61.
MR 4380665
[7] De, U. C., Shaikh, A. A.:
Complex Manifolds and Contact Manifolds. Narosa Publishing House, New Delhi (2009).
MR 2934086 |
Zbl 1208.53001
[10] Karmakar, P., Bhattacharyya, A.: Anti-invariant submanifolds of some indefinite almost contact and paracontact manifolds. Bull. Calcutta Math. Soc. 112 (2020), 95-108.
[11] Mandal, A., Das, A.:
On $M$-projective curvature tensor of Sasakian manifolds admitting Zamkovoy connection. Adv. Math., Sci. J. 9 (2020), 8929-8940.
DOI 10.37418/amsj.9.10.115
[13] Mandal, A., Das, A.:
Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection. Bull. Cal. Math. Soc. 112 (2020), 431-450.
MR 2676120
[15] Nagaraja, H. G., Somashekhara, G.:
On pseudo projective curvature tensor in Sasakian manifolds. Int. J. Contemp. Math. Sci. 6 (2011), 1319-1328.
MR 2837958 |
Zbl 1252.53058
[16] Narain, D., Prakash, A., Prasad, B.:
A pseudo projective curvature tensor on a Lorentzian para-Sasakian manifold. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 55 (2009), 275-284.
MR 2562248 |
Zbl 1199.53040
[18] Ojha, R. H.:
A note on the $M$-projective curvature tensor. Indian J. Pure Appl. Math. 8 (1977), 1531-1534.
MR 0548666 |
Zbl 0426.53022
[19] Ojha, R. H.:
$M$-projectively flat Sasakian manifolds. Indian J. Pure Appl. Math. 17 (1986), 481-484.
MR 0840755 |
Zbl 0631.53038
[20] Pandey, H. B., Kumar, A.:
Anti-invariant submanifolds of almost para-contact manifolds. Indian J. Pure Appl. Math. 16 (1985), 586-590.
MR 0814389 |
Zbl 0585.53015
[21] Pokhariyal, G. P., Mishra, R. S.:
Curvature tensors and their relativistic significance. II. Yokohama Math. J. 19 (1971), 97-103.
MR 0426797 |
Zbl 0229.53026
[23] Prasad, B.:
A pseudo projective curvature tensor on a Riemannian manifold. Bull. Calcutta Math. Soc. 94 (2002), 163-166.
MR 1947297 |
Zbl 1028.53016
[25] Shukla, S. S., Singh, D. D.:
On $(\epsilon)$-trans-Sasakian manifolds. Int. J. Math. Anal., Ruse 4 (2010), 2401-2414.
MR 2770033 |
Zbl 1227.53045
[26] Singh, J. P.:
On $m$-projectively flat almost pseudo Ricci symmetric manifolds. Acta Math. Univ. Comen., New Ser. 86 (2017), 335-343.
MR 3702446 |
Zbl 1399.53059
[28] Tripathi, M. M., Gupta, P.:
On $\tau$-curvature tensor in $K$-contact and Sasakian manifolds. Int. Electron. J. Geom. 4 (2011), 32-47.
MR 2801462 |
Zbl 1221.53079