Previous |  Up |  Next

Article

Keywords:
modular lattice; direct summand; Goldie extending element
Summary:
In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \leq a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.
References:
[1] Akalan, E., Birkenmeier, G. F., Tercan, A.: Goldie extending modules. Commun. Algebra 37 (2009), 663-683. DOI 10.1080/00927870802254843 | MR 2493810 | Zbl 1214.16005
[2] Călugăreanu, G.: Lattice Concepts of Module Theory. Kluwer Texts in the Mathematical Sciences 22. Kluwer, Dordrecht (2000). DOI 10.1007/978-94-015-9588-9 | MR 1782739 | Zbl 0959.06001
[3] Crawley, P., Dilworth, R. P.: Algebraic Theory of Lattices. Prentice Hall, Engelwood Cliffs (1973). Zbl 0494.06001
[4] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R.: Extending Modules. Pitman Research Notes in Mathematics Series 313. Longman Scientific, Harlow (1994). MR 1312366 | Zbl 0841.16001
[5] Grätzer, G.: General Lattice Theory. Birkhäuser, Basel (1998). DOI 10.1007/978-3-0348-7633-9 | MR 1670580 | Zbl 0909.06002
[6] Grzeszczuk, P., Puczyłowski, E. R.: On Goldie and dual Goldie dimensions. J. Pure Appl. Algebra 31 (1984), 47-54. DOI 10.1016/0022-4049(84)90075-6 | MR 0738204 | Zbl 0528.16010
[7] Harmanci, A., Smith, P. F.: Finite direct sums of CS-modules. Houston J. Math. 19 (1993), 523-532. MR 1251607 | Zbl 0802.16006
[8] Nimbhorkar, S. K., Shroff, R. C.: Ojective ideals in modular lattices. Czech. Math. J. 65 (2015), 161-178. DOI 10.1007/s10587-015-0166-5 | MR 3336031 | Zbl 1338.06004
[9] Nimbhorkar, S. K., Shroff, R. C.: Goldie extending elements in modular lattices. Math. Bohem. 142 (2017), 163-180. DOI 10.21136/MB.2016.0049-14 | MR 3660173 | Zbl 1424.06028
[10] Tercan, A., Yücel, C. C.: Module Theory: Extending Modules and Generalizations. Frontiers in Mathematics. Birkhäuser, Basel (2016). DOI 10.1007/978-3-0348-0952-8 | MR 3468915 | Zbl 1368.16002
[11] Wu, D., Wang, Y.: Two open questions on Goldie extending modules. Commun. Algebra 40 (2012), 2685-2692. DOI 10.1080/00927872.2011.551902 | MR 2968904 | Zbl 1253.16004
Partner of
EuDML logo