Previous |  Up |  Next

Article

Keywords:
frame; atomic subspace; $g$-fusion frame; $K$-$g$-fusion frame
Summary:
We introduce the notion of a $g$-atomic subspace for a bounded linear operator and construct several useful resolutions of the identity operator on a Hilbert space using the theory of $g$-fusion frames. Also, we shall describe the concept of frame operator for a pair of $g$-fusion Bessel sequences and some of their properties.
References:
[1] Ahmadi, R., Rahimlou, G., Sadri, V., Farfar, R. Zarghami: Constructions of $K$-g-fusion frames and their duals in Hilbert spaces. Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 13 (2020), 17-32. MR 4136053
[2] Bhandari, A., Mukherjee, S.: Atomic subspaces for operators. Indian J. Pure Appl. Math. 51 (2020), 1039-1052. DOI 10.1007/s13226-020-0448-y | MR 4159339 | Zbl 1456.42037
[3] Casazza, P. G., Kutyniok, G.: Frames of subspaces. Wavelets, Frames and Operator Theory Contemporary Mathematics 345. American Mathematical Society, Providence (2004), 87-114. DOI 10.1090/conm/345 | MR 2066823 | Zbl 1058.42019
[4] Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (2016). DOI 10.1007/978-3-319-25613-9 | MR 3495345 | Zbl 1348.42033
[5] Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27 (1986), 1271-1283. DOI 10.1063/1.527388 | MR 0836025 | Zbl 0608.46014
[6] Douglas, R. G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17 (1966), 413-415. DOI 10.1090/S0002-9939-1966-0203464-1 | MR 0203464 | Zbl 0146.12503
[7] Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72 (1952), 341-366. DOI 10.1090/S0002-9947-1952-0047179-6 | MR 0047179 | Zbl 0049.32401
[8] Găvruţa, L.: Frames for operators. Appl. Comput. Harmon. Anal. 32 (2012), 139-144. DOI 10.1016/j.acha.2011.07.006 | MR 2854166 | Zbl 1230.42038
[9] Găvruţa, L.: Atomic decompositions for operators in reproducing kernel Hilbert spaces. Math. Rep., Buchar. 17 (2015), 303-314. MR 3417770 | Zbl 1374.42057
[10] Găvruţa, P.: On the duality of fusion frames. J. Math. Anal. Appl. 333 (2007), 871-879. DOI 10.1016/j.jmaa.2006.11.052 | MR 2331700 | Zbl 1127.46016
[11] Ghosh, P., Samanta, T. K.: Stability of dual $g$-fusion frames in Hilbert spaces. Methods Funct. Anal. Topology 26 (2020), 227-240. DOI 10.31392/MFAT-npu26_3.2020.04 | MR 4165154
[12] Hua, D., Huang, Y.: $K$-g-frames and stability of $K$-g-frames in Hilbert spaces. J. Korean Math. Soc. 53 (2016), 1331-1345. DOI 10.4134/JKMS.j150499 | MR 3570976 | Zbl 1358.42026
[13] Pawan, K. J., Om, P. A.: Functional Analysis. New Age International Publisher, New Delhi (1995).
[14] Sadri, V., Rahimlou, G., Ahmadi, R., Zarghami, R.: Generalized fusion frames in Hilbert spaces. Available at https://arxiv.org/abs/1806.03598v1 (2018), 16 pages.
[15] Sun, W.: $g$-frames and $g$-Riesz bases. J. Math. Anal. Appl. 322 (2006), 437-452. DOI 10.1016/j.jmaa.2005.09.039 | MR 2239250 | Zbl 1129.42017
Partner of
EuDML logo