Previous |  Up |  Next

Article

Keywords:
monotonically star compact; regular closed; perfect; star-compact; covering; star-covering; topological space
Summary:
A space $ X $ is said to be monotonically star compact if one assigns to each open cover $ \mathcal {U} $ a subspace $ s(\mathcal {U}) \subseteq X $, called a kernel, such that $ s(\mathcal {U}) $ is a compact subset of $ X $ and $ {\rm St}(s(\mathcal {U}),\mathcal {U})=X $, and if $ \mathcal {V} $ refines $ \mathcal {U} $ then $ s(\mathcal {U}) \subseteq s(\mathcal {V}) $, where $ {\rm St}(s(\mathcal {U}),\mathcal {U})= \bigcup \{U \in \nobreak \mathcal {U}\colon U \cap s(\mathcal {U}) \not = \emptyset \} $. We prove the following statements: \item {(1)} The inverse image of a monotonically star compact space under the open perfect map is monotonically star compact. \item {(2)} The product of a monotonically star compact space and a compact space is monotonically star compact. \item {(3)} If $ X $ is monotonically star compact space with $ e(X) < \omega $, then $ A(X) $ is monotonically star compact, where $ A(X) $ is the Alexandorff duplicate of space $X$. \endgraf The above statement (2) gives an answer to the question of Song (2015).
References:
[1] Aiken, L. P.: Star-covering properties: generalized $ \psi $-spaces, countability conditions, reflection. Topology Appl. 158 (2011), 1732-1737 \99999DOI99999 10.1016/j.topol.2011.06.032 . DOI 10.1016/j.topol.2011.06.032 | MR 2812483 | Zbl 1223.54029
[2] Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G.: On extent of star countable spaces. Cent. Eur. J. Math. 9 (2011), 603-615 \99999DOI99999 10.2478/s11533-011-0018-y . MR 2784032 | Zbl 1246.54017
[3] Alas, O. T., Junqueira, L. R., Wilson, R. G.: Countability and star covering properties. Topology Appl. 158 (2011), 620-626 \99999DOI99999 10.1016/j.topol.2010.12.012 . MR 2765618 | Zbl 1226.54023
[4] Cao, J., Song, Y.: Aquaro number absolute star-Lindelöf number. Houston J. Math. 29 (2003), 925-936 \99999MR99999 2045661 . MR 2045661 | Zbl 1155.54303
[5] Engelking, R.: General Topology. Mathematics Library 60. PWN-Polish Scientific Publishers, Warsaw (1977),\99999MR99999 0500780 . MR 0500780 | Zbl 0373.54002
[6] Matveev, M. V.: A Survey on Star Covering Properties. Topology Atlas Preprint \#330. York University, Toronto (1998), Available at http://at.yorku.ca/v/a/a/a/19.htm\kern0pt
[7] Douwen, E. K. van, Reed, G. K., Roscoe, A. W., Tree, I. J.: Star covering properties. Topology Appl. 39 (1991), 71-103. DOI 10.1016/0166-8641(91)90077-Y | MR 1103993 | Zbl 0743.54007
[8] Mill, J. van, Tkachuk, V. V., Wilson, R. G.: Classes defined by stars and neighbourhood assignments. Topology Appl. 154 (2007), 2127-2134. DOI 10.1016/j.topol.2006.03.029 | MR 2324924 | Zbl 1131.54022
[9] Popvassilev, S. G., Porter, J. E.: Monotone properties defined from stars of open coverings. Topology Appl. 169 (2014), 87-98 \99999DOI99999 10.1016/j.topol.2014.02.034 . MR 3199861 | Zbl 1376.54025
[10] Song, Y. -K.: Monotonically star compact spaces. Topology Appl. 190 (2015), 35-41 \99999DOI99999 10.1016/j.topol.2015.04.016 . MR 3349504 | Zbl 1316.54010
[11] Xuan, W. -F., Shi, W. -X.: Notes on star Lindelöf spaces. Topology Appl. 204 (2016), 63-69. DOI 10.1016/j.topol.2016.02.009 | MR 3482703 | Zbl 1342.54015
Partner of
EuDML logo