Previous |  Up |  Next

Article

Keywords:
stability; boundedness; square integrability; Lyapunov functional; neutral differential equation of third order
Summary:
The authors establish some new sufficient conditions under which all solutions of a certain class of nonlinear neutral delay differential equations of the third order are stable, bounded, and square integrable. Illustrative examples are given to demonstrate the main results.
References:
[1] Ademola, A. T., Arawomo, P. O.: Uniform stability and boundedness of solutions of nonlinear delay differential equations of the third order. Math. J. Okayama Univ. 55 (2013), 157-166. MR 3026962 | Zbl 1277.34098
[2] Baculíková, B., Džurina, J.: On the asymptotic behavior of a class of third order nonlinear neutral differential equations. Cent. Eur. J. Math. 8 (2010), 1091-1103. DOI 10.2478/s11533-010-0072-x | MR 2736908 | Zbl 1221.34173
[3] Beldjerd, D., Remili, M.: Boundedness and square integrability of solutions of certain third-order differential equations. Math. Bohem. 143 (2018), 377-389. DOI 10.21136/MB.2018.0029-17 | MR 3895262 | Zbl 06997372
[4] Das, P., Misra, N.: A necessary and sufficient condition for the solutions of a functional differential equation to be oscillatory or tend to zero. J. Math. Anal. Appl. 205 (1997), 78-87. DOI 10.1006/jmaa.1996.5143 | MR 1426981 | Zbl 0874.34058
[5] Dorociaková, B.: Some nonoscillatory properties of third order differential equations of neutral type. Tatra Mt. Math. Publ. 38 (2007), 71-76. MR 2428913 | Zbl 1164.34537
[6] Došlá, Z., Liška, P.: Comparison theorems for third-order neutral differential equations. Electron. J. Differ. Equ. 2016 (2016), Article ID 38, 13 pages. MR 3466509 | Zbl 1333.34106
[7] Došlá, Z., Liška, P.: Oscillation of third-order nonlinear neutral differential equations. Appl. Math. Lett. 56 (2016), 42-48. DOI 10.1016/j.aml.2015.12.010 | MR 3455737 | Zbl 1335.34102
[8] Ezeilo, J. O. C.: On the stability of solutions of certain differential equations of the third order. Q. J. Math., Oxf. II. Ser. 11 (1960), 64-69. DOI 10.1093/qmath/11.1.64 | MR 0117394 | Zbl 0090.06603
[9] Goldwyn, R. M., Narendra, K. S.: Stability of Certain Nonlinear Differential Equations Using the Second Method of Liapunov. Technical Report No. 403. Harvard University, Cambridge (1963).
[10] Graef, J. R., Beldjerd, D., Remili, M.: On stability, ultimate boundedness, and existence of periodic solutions of certain third order differential equations with delay. Panam. Math. J. 25 (2015), 82-94. MR 3364326 | Zbl 1331.34145
[11] Graef, J. R., Oudjedi, L. D., Remili, M.: Stability and square integrability of solutions to third order neutral delay differential equations. Tatra Mt. Math. Publ. 71 (2018), 81-97. DOI 10.2478/tmmp-2018-0008 | MR 3939426 | Zbl 07005891
[12] Hale, J. K.: Theory of Functional Differential Equations. Applied Mathematical Sciences 3. Springer, New York (1977). DOI 10.1007/978-1-4612-9892-2_3 | MR 0508721 | Zbl 0352.34001
[13] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99. Springer, New York (1993). DOI 10.1007/978-1-4612-4342-7 | MR 1243878 | Zbl 0787.34002
[14] Hara, T.: Remarks on the asymptotic behavior of the solutions of certain non-autonomous differential equations. Proc. Japan Acad. 48 (1972), 549-552. DOI 10.3792/pja/1195526260 | MR 0326088 | Zbl 0269.34041
[15] Hara, T.: On the asymptotic behavior of the solutions of some third and fourth order non-autonomous differential equations. Publ. Res. Inst. Math. Sci., Kyoto Univ. 9 (1974), 649-673. DOI 10.2977/prims/1195192447 | MR 0346256 | Zbl 0286.34083
[16] Kulenović, M. R. S., Ladas, G., Meimaridou, A.: Stability of solutions of linear delay differential equations. Proc. Am. Math. Soc. 100 (1987), 433-441. DOI 10.1090/S0002-9939-1987-0891141-7 | MR 0891141 | Zbl 0645.34061
[17] Li, T., Zhang, C., Xing, G.: Oscillation of third-order neutral delay differential equations. Abstr. Appl. Anal. 2012 (2012), Article ID 569201, 11 pages. DOI 10.1155/2012/569201 | MR 2872306 | Zbl 1232.34097
[18] Liapounoff, A. M.: Problème général de la stabilité du mouvement. Annals of Mathematics Studies 17. Princeton University Press, Princeton (1947), French. DOI 10.1515/9781400882311 | MR 0021186 | Zbl 0031.18403
[19] Mihalíková, B., Kostiková, E.: Boundedness and oscillation of third order neutral differential equations. Tatra Mt. Math. Publ. 43 (2009), 137-144. DOI 10.2478/v10127-009-0033-6 | MR 2588884 | Zbl 1212.34193
[20] Nakashima, M.: Asymptotic behavior of the solutions of some third order differential equations. Rep. Fac. Sci., Kagoshima Univ. 4 (1971), 7-15. MR 0299893
[21] Omeike, M. O.: New results on the asymptotic behavior of a third-order nonlinear differential equation. Differ. Equ. Appl. 2 (2010), 39-51. DOI 10.7153/dea-02-04 | MR 2654750 | Zbl 1198.34085
[22] Omeike, M. O.: New results on the stability of solution of some non-autonomous delay differential equations of the third order. Differ. Uravn. Protsessy Upr. 1 (2010), 18-29. MR 2766411 | Zbl 07038834
[23] Qian, C.: On global stability of third-order nonlinear differential equations. Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 651-661. DOI 10.1016/S0362-546X(99)00120-0 | MR 1776296 | Zbl 0969.34048
[24] Qian, C.: Asymptotic behavior of a third-order nonlinear differential equation. J. Math. Anal. Appl. 284 (2003), 191-205. DOI 10.1016/S0022-247X(03)00302-0 | MR 1996127 | Zbl 1054.34078
[25] Remili, M., Beldjerd, D.: On the asymptotic behavior of the solutions of third order delay differential equations. Rend. Circ. Mat. Palermo (2) 63 (2014), 447-455. DOI 10.1007/s12215-014-0169-3 | MR 3298595 | Zbl 1321.34097
[26] Remili, M., Beldjerd, D.: A boundedness and stability results for a kind of third order delay differential equations. Appl. Appl. Math. 10 (2015), 772-782. MR 3447611 | Zbl 1331.34135
[27] Remili, M., Beldjerd, D.: On ultimate boundedness and existence of periodic solutions of kind of third order delay differential equations. Acta Univ. M. Belii, Ser. Math. 24 (2016), 43-57. MR 3492940 | Zbl 1367.34091
[28] Remili, M., Beldjerd, D.: Stability and ultimate boundedness of solutions of some third order differential equations with delay. J. Assoc. Arab Univers. Basic Appl. Sci. 23 (2017), 90-95. DOI 10.1016/j.jaubas.2016.05.002 | MR 3752693
[29] Šimanov, S. N.: On stability of solution of a nonlinear equation of the third order. Prikl. Mat. Mekh. 17 (1953), 369-372 Russian. MR 0055523 | Zbl 0052.31404
[30] Swick, K. E.: Asymptotic behavior of the solutions of certain third order differential equations. SIAM J. Appl. Math. 19 (1970), 96-102. DOI 10.1137/0119008 | MR 0267212 | Zbl 0212.11403
[31] Tian, Y., Cai, Y., Fu, Y., Li, T.: Oscillation and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. Adv. Difference Equ. 2015 (2015), Article ID 267, 14 pages. DOI 10.1186/s13662-015-0604-6 | MR 3391600 | Zbl 1422.34196
[32] Tunç, C.: On the stability and boundedness of solutions of nonlinear third order differential equations with delay. Filomat 24 (2010), 1-10. DOI 10.2298/FIL1003001T | MR 2791725 | Zbl 1299.34244
[33] Tunç, C.: Some stability and boundedness conditions for non-autonomous differential equations with deviating arguments. Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Article ID 1, 12 pages. DOI 10.14232/ejqtde.2010.1.1 | MR 2577154 | Zbl 1201.34123
[34] Yu, J.: Asymptotic stability for a class of nonautonomous neutral differential equations. Chin. Ann. Math., Ser. B 18 (1997), 449-456. MR 1483728 | Zbl 0894.34072
[35] Yu, J., Wang, Z., Qian, C.: Oscillation of neutral delay differential equation. Bull. Aust. Math. Soc. 45 (1992), 195-200. DOI 10.1017/S0004972700030057 | MR 1155477 | Zbl 0729.34052
[36] Zhang, L., Si, L.: Global asymptotic stability of a class of third order nonlinear system. Acta Math. Appl. Sin. 30 (2007), 99-103 Chinese. MR 2339313 | Zbl 1125.34037
Partner of
EuDML logo