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1. Introduction

The study of qualitative behavior of solutions of nonlinear differential equations,

such as their stability, boundedness, square integrability, etc., without explicitly

determining the solutions has attracted the attention of researchers for many years

going back to the pioneering work of Lyapunov (see [18]). The aim of this paper is to

study the asymptotic stability of solutions to a class of third-order neutral equations

of the form

(1.1) (x′′(t) + Ω(x′′(t− r)))′ +Ψ(x(t))x′′(t) + Φ(x(t))x′(t) + h(x(t− σ)) = 0,
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and the boundedness and square integrability of solutions of the corresponding forced

equation

(1.2) (x′′(t) + Ω(x′′(t− r)))′ +Ψ(x(t))x′′(t) + Φ(x(t))x′(t) + h(x(t− σ)) = e(t),

for all t > t1 > t0 + ̺, where ̺ = max{r, σ}.

The asymptotic behavior of solutions of equations of the form of (1.1) with

Ω(x) = 0 has been studied by many authors utilizing various methods. For example,

in 1953, Simanov (see [29]) investigated the global stability of the zero solution of

the equation

x′′′ + ψ(x, x′)x′′ + bx′ + cx = 0,

where b and c are constants. Later, Ezeilo (see [8]) discussed the global stability of

the zero solution of the equation of the form

x′′′ + ψ(x, x′)x′′ + ϕ(x′) + g(x) = 0.

Swick in [30] studied the asymptotic behavior of solutions of the nonlinear differential

equations

x′′′ + ax′′ + g(x)x′ + h(x) = e(t)

and

x′′′ + p(t)x′′ + q(t)g(x′) + h(x) = e(t).

Nakashima in [20] considered the perturbed versions of the these equations. In 1972,

Hara (see [14]) investigated the asymptotic behavior of solutions of differential equa-

tions of the form

x′′′ + a(t)x′′ + b(t)g(x, x′) + c(t)h(x) = p(t, x, x′, x′′)

and showed that all solutions are uniformly bounded and satisfy the conditions

x(t) → 0, x′(t) → 0, and x′′(t) → 0 as t→ ∞.

Hara in [15] also considered the third order equations

x′′′ + a(t)x+ b(t)x′ + c(t)x = p(t)

and

x′′′ + a(t)x′′ + b(t)x′ + c(t)h(x) = p(t, x, x′, x′′)

and established conditions under which all solutions of the above equations are uni-

formly bounded and tend to zero as t→ ∞.
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More recently, Qian (see [23], [24]) and Omeike (see [21]) discussed the global

stability and asymptotic behavior of solutions of the differential equations

x′′′ + ψ(x, x′)x′′ + f(x, x′) = 0

and

x′′′ + ψ(x, x′)x′′ + f(x, x′) = p(t, x, x′, x′′)

with particular attention paid to the boundedness of solutions. In 2007, Zhang and

Si (see [36]) investigated the asymptotic stability of solutions of

x′′′(t) + g(x′(t), x′′(t)) + f(x(t), x′(t)) + h(x(t)) = 0.

By defining a Lyapunov functional, Tunç in [32] investigated the stability and bound-

edness of solutions to nonlinear third order differential equations with constant de-

lay, r, of the form

x′′′(t) + g(x(t), x′(t))x′′(t) + f(x(t− r), x′(t− r)) + h(x(t− r))

= p(t, x(t), x′(t), x(t − r), x′(t− r), x′′(t)).

Ademola and Arawomo (see [1]) obtained criteria for uniform stability, uniform

boundedness, and uniform ultimate boundedness of solutions for the more general

third order nonlinear delay differential equation

x′′′ + f(x, x′, x′′)x′′ + g(x(t− r(t)), x′(t− r(t))) + h(x(t− r(t))) = p(t, x, x′, x′′).

In [11], Graef et al. obtain sufficient conditions that guarantee the existence

of square integrability and asymptotic stability of the zero solution of the non-

autonomous third-order delay differential equation

(x(t) + βx(t− r))′′′ + a(t)(Q(x(t))x′(t))′ + b(t)R(x(t))x′(t) + c(t)f(x(−r)) = 0,

and the boundedness and square integrability of solutions of the corresponding forced

equation

(x(t) + βx(t − r))′′′ + a(t)(Q(x(t))x′(t))′ + b(t)R(x(t))x′(t) + c(t)f(x(t− r)) = e(t),

which are different from equations (1.1) and (1.2) above.

Our motivation for the present work has come from the papers mentioned above

as well as from many others in the literature. To the best of our knowledge, there

do not appear to be any results of the type obtained in this paper for third order
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neutral differential equations of the form (1.1) by using Lyapunov functionals. It is

clear that equations (1.1) and (1.2) are different from those mentioned above due

to the presence of the neutral term Ω in our equations. Hence, our results include

and generalize theirs. We note that many results concerning the theory of neutral

functional differential equations are given in the monographs by Hale and Lunel

(see [12], [13]). These equations find numerous applications in natural sciences and

technology, but they are characterized by specific properties which make their study

difficult in both concepts and techniques. For additional results related to those in

this paper, we refer the reader to references [2]–[7], [9], [10], [16], [17], [19], [22],

[25]–[28], [31], [33]–[35].

Here we assume that in equations (1.1) and (1.2) the functions Φ,Ψ, h,Ω: R → R

are continuous and h(0) = 0. In addition, it is also assumed that Φ′, Ψ′, h′, and Ω′

exist and are continuous.

By a solution of (1.1) we mean a continuous function x : [tx,∞) → R for tx > t0+̺

such that x(t) ∈ C2([tx − ̺,∞),R), x(t) satisfies equation (1.1) on [tx,∞), and

Z(t) ∈ C1([tx,∞),R). Without further mention, we will assume throughout that

every solution x(t) of (1.1) under consideration here is continuable to the right and

nontrivial, i.e., x(t) is defined on some ray [tx,∞) and sup{|x(t)| : t > T } > 0 for

every T > tx. Moreover, we tacitly assume that (1.1) possesses such solutions.

We set, for a solution x of (1.1),

Z(t) = x′′(t) + Ω(x′′(t− r)) ∀ t > t0 + ̺,

y(t) = x′(t),

∆(t) = x2(t) + y2(t) + Z2(t),

and

Γ(t) = x2(t) + x′2(t) + x′′2(t).

Equation (1.1) can be written as the system

(1.3)



























x′(t) = y(t),

y′(t) = z(t),

(z(t) + Ω(z(t− r)))′ = −Ψ(x(t))z(t)− Φ(x(t))y(t) − h(x(t))

+

∫ t

t−σ

h′(x(s))y(s) ds.

It easy to see from (1.3) that

(1.4) Z(t) = x′′(t) + Ω(x′′(t− r)) = z(t) + Ω(z(t− r)).
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2. Stability

Before stating and proving our main results, we introduce the following hypotheses.

Assume that there are positive constants d, ϕ0, ϕ1, ψ0, ψ1, n, δ0, δ1, and K such that

the following conditions on the functions that appear in equation (1.1) are satisfied:

(i) ψ0 6 Ψ(x)− d 6 ψ1 and ϕ0 6 Φ(x) 6 ϕ1;

(ii) |Ω(x)| 6 K|x| for all x;

(iii) |h′(x)| 6 δ0 for all x, and h(x)/x > δ1 for all x 6= 0;

(iv)
∫

∞

−∞
(|Ψ′(u)|+ |Φ′(u)|) du 6 n.

For ease of exposition we adopt the following notation:

θ1(t) = Ψ′(x(t))x′(t),

θ2(t) = Φ′(x(t))x′(t),

ω(t) = |θ1(t)|+ |θ2(t)|.

Theorem 2.1. In addition to conditions (i)–(iv), assume that there are positive

constants A, B, C, and ε such that:

(v) −dδ1 +
1
2 (δ0K + dψ1) = −A;

(vi) δ0 − dϕ0 +
1
2 (d+K(d+ ϕ1)) = −B;

(vii) (d− ψ0) +
1
2d(ψ1 + 1) + 1

2K(3d+ ϕ1 + 2δ0 + 2ψ1) + ε = −C;

(viii) δ0/ϕ0 < d < min{ 1
3ψ0,

1
2ϕ0}.

Then, the zero solution of (1.3) is uniformly asymptotically stable provided that

σ <
2

δ0
min

{A

d
,

B

(3d+ 1 +K)
, C,

ε

K

}

.

P r o o f. The proof of this theorem depends on properties of the continuously

differentiable functional W (t, xt, yt, zt) =W defined by

(2.1) W = V e
−η−1

∫
t

t1
ω(s) ds

,

where
V = V (t, xt, yt, zt) = V1 + V2 + V3,

V1 = d

∫ x

0

h(u) du+ h(x)y +
1

2
Φ(x)y2,

V2 =
1

2
(dy + Z)2 +

d

2
(Ψ(x)− d)y2 + dxZ +

d

2
Φ(x)x2,

V3 = µ

∫ 0

−σ

∫ t

t+s

y2(u) du ds+ γ

∫ t

t−r

z2(s) ds.

Here, γ, µ and η are positive constants to be specified later in the proof.
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Since h(0) = 0, it is easy to verify that

2

∫ x

0

h′(u)h(u) du = h2(x),

and since |h′(x)| 6 δ0, we see that |h(x)| 6 δ0|x|.

From conditions (i), (iii), and (viii),

V1 = d

∫ x

0

h(u) du+
Φ(x)

2

(

y +
h(x)

Φ(x)

)2

−
1

2Φ(x)
h2(x)

> d

∫ x

0

h(u) du−
1

ϕ0

∫ x

0

h′(u)h(u) du >

∫ x

0

(

d−
δ0
ϕ0

)

h(u) du >

(

d−
δ0
ϕ0

)δ1
2
x2.

Also, using (i) and (viii) we have

V2 =
1

4
(Z2 + 4dxZ + 2dΦ(x)x2) +

1

4
(Z2 + 4dyZ + 2d(Ψ(x)− d)y2)) +

1

2
d2y2

=
1

8
(Z + 2dx)2 +

1

4
dΦ(x)

(

x+
1

Φ(x)
Z
)2

+ (Φ(x)− 2d)
(1

4
dx2 +

1

8Φ(x)
Z2

)

+
1

8
(Z + 2dy)2 +

1

4
d(Ψ(x)− d)

(

y +
1

Ψ(x)− d
Z
)2

+ (Ψ(x) − 3d)
(dy2

4
+

Z2

8(Ψ(x)− d)

)

+
1

2
d2y2

> (ϕ0 − 2d)
(d

4
x2 +

1

8ϕ1
Z2

)

+ (ψ0 − 3d)
(d

4
y2 +

1

8ψ1
Z2

)

> k0(x
2 + Z2) + k1(y

2 + Z2),

where k0 = 1
4 (ϕ0 − 2d)min{d, 1/(2ϕ1)}, and k1 = 1

4 (ψ0 − 3d)min{d, 1/(2ψ1)}.

Hence, there exists a positive constant λ0, small enough so that

(2.2) V > λ0∆(t).

Therefore, from (2.2) and (2.1), we obtain

(2.3) W > λ1(x
2(t) + y2(t) + Z2(t)) = λ1∆(t),

where λ1 = λ0e
−n/η.

To obtain an upper estimate on V , note that by using Schwarz’s inequality, we

have

V1 6
δ0
2
(d+ δ0)x

2 +
1

2
(1 + ϕ1)y

2,

and

V2 6
d

2
(1 + ϕ1)x

2 +
d

2
(1 + d+ ψ1)y

2 +
(

d+
1

2

)

Z2.
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Thus,

(2.4) V 6 λ2∆(t) + µ

∫ 0

−σ

∫ t

t+s

y2(u) du ds+ γ

∫ t

t−r

z2(s) ds,

where

λ2 = max
{δ0
2
(d+ δ0) +

d

2
(1 + ϕ1),

1

2
(1 + ϕ1) +

d

2
(1 + d+ ψ1),

(

d+
1

2

)}

.

Since

(2.5) e−n/η < e
−η−1

∫
t

t1
ω(s) ds

< 1,

from (2.2), (2.4) and (2.1), we see that

λ1∆(t) 6W 6 V 6 λ2∆(t) + µ

∫ 0

−σ

∫ t

t+s

y2(u) du ds+ γ

∫ t

t−r

z2(s) ds,

where λ1 = λ0e
−n/η.

Now taking the derivative of V along the trajectories of system (1.3), we obtain

V ′

(1.3) = U1 + U2 + U3 +
d

2
θ1(t)y

2 +
1

2
θ2(t)(y

2 + dx2)

where

U1 = − dxh(x(t)) + (h′(x)− dΦ(x) + µσ)y2(t) + (d−Ψ(x(t)) + γ)z2(t),

U2 = dyz(t)− dΨ(x(t))xz(t) − γz2(t− r)

+ (d− Φ(x))y − h(x(t)) + (d−Ψ(x(t)))z(t)Ω(z(t − r)),

and

U3 = (dx+ dy + Z)

∫ t

t−σ

h′(x(s))y(s) ds− µ

∫ t

t−σ

y2(s) ds.

Conditions (i) and (iii) imply that

U1 6 −dδ1x
2 + (δ0 − dϕ0 + µσ)y2(t) + (d− ψ0 + γ)z2(t).

Using Schwarz’s inequality again, together with conditions (i)–(iii), we obtain

U2 6
1

2
(δ0K + dψ1)x

2(t) +
1

2
(d+K(d+ ϕ1))y

2

+
1

2
(dψ1 + d+K(d+ ψ1) + δ0K)z2(t)

+
(K

2
(2d+ ϕ1 + δ0 + ψ1)− γ

)

z2(t− r).
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Notice that

dx(t)

∫ t

t−σ

h′(x(s))y(s) ds 6
dδ0
2
σx2(t) +

dδ0
2

∫ t

t−σ

y2(s) ds,

dy(t)

∫ t

t−σ

h′(x(s))y(s) ds 6
dδ0
2
σy2(t) +

dδ0
2

∫ t

t−σ

y2(s) ds,

z(t)

∫ t

t−σ

h′(x(s))y(s) ds 6
δ0
2
σz2(t) +

δ0
2

∫ t

t−σ

y2(s) ds,

Ω(z(t− r))

∫ t

t−σ

h′(x(s))y(s) ds 6
δ0K

2
σz2(t− r) +

δ0K

2

∫ t

t−σ

y2(s) ds.

With some rearrangement of terms and using the estimates above, we can easily

obtain

V ′

(1.3) 6

(

− dδ1 +
1

2
(δ0K + dψ1) +

dδ0
2
σ
)

x2(t)

+
(

δ0 − dϕ0 +
1

2
(d+K(d+ ϕ1)) +

(

µ+
dδ0
2

)

σ
)

y2(t)

+
(

d− ψ0 +
1

2
(dψ1 + d+K(d+ ψ1 + δ0)) + γ +

δ0
2
σ
)

z2(t)

+
(K

2
(2d+ ϕ1 + δ0 + ψ1)− γ +

Kδ0
2
σ
)

z2(t− r)

+
d

2
θ1(t)y

2 +
1

2
(dx2 + y2)θ2(t) +

(δ0
2
(2d+ 1+K)− µ

)

∫ t

t−σ

y2(s) ds.

If we now choose

δ0
2
(2d+ 1 +K) = µ and

K

2
(2d+ ϕ1 + δ0 + ψ1) + ε = γ,

then

V ′

(1.3) 6 λ3ω(t)(x
2(t) + y2(t)) +

(

−A+
dδ0
2
σ
)

x2(t)

+
(

−B +
δ0
2
(3d+ 1 +K)σ

)

y2(t) +
(

− C +
δ0σ

2

)

z2(t)

+
(

− ε+
δ0K

2
σ
)

z2(t− r),

where λ3 = 1
2 (d+ 1). Now

(2.6) Z2 = z2 +Ω2(z(t− r)) + 2zΩ(z(t− r)),

so applying Schwarz’s inequality and condition (ii) gives

(2.7) Z2 6 2(z2 +Ω2(z(t− r))) 6 2(z2 +K2z2(t− r)).
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If we now take

σ <
2

δ0
min

{A

d
,

B

(3d+ 1 +K)
, C,

ε

K

}

,

then we can write

(2.8) V ′

(1.3) 6 λ3ω(t)(x
2(t) + y2(t))− α1x

2(t)− α2y
2(t)− α3z

2(t)− α4z
2(t− r),

6 λ3ω(t)(x
2(t) + y2(t))− α1x

2(t)− α1y
2(t)− α5(z

2(t) +K2z2(t− r))

6 λ3ω(t)(x
2(t) + y2(t))− α1x

2(t)− α2y
2(t)−

α5

2
Z2,

where

α1 = A−
δ0
2
σ, α2 = B −

δ0
2
(3d+ 1 +K)σ, α3 = C −

δ0σ

2
,

α4 = ε−
δ0K

2
σ, α5 = min

{

α3,
α4

K2

}

,

and

αi > 0 for i = 1, 2, . . . , 5.

Hence,

V ′

(1.3) 6 λ3ω(t)(x
2(t) + y2(t))− λ4∆(t),

where λ4 = min{α1, α2,
1
2α5}. Therefore, from (2.1) and (2.2), we have

W ′

(1.3) =
(

V ′ −
1

η
ω(t)V

)

e
−η−1

∫
t

t1
ω(s) ds

6

(

λ3ω(t)(x
2(t) + y2(t)) − λ4∆(t)−

λ0
η
ω(t)∆(t)

)

e
−η−1

∫
t

t1
ω(s) ds

.

By taking η = λ0/λ3 = 2λ0/(d+ 1), we obtain

W ′

(1.3) 6 −λ5∆(t),

where λ5 = λ4e
−n/η.

The uniform asymptotic stability of the zero solution of (1.1) follows immediately.

�
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3. Boundedness

Our main theorem in this section is for the forced equation (1.2). The correspond-

ing system becomes

(3.1)



























x′(t) = y(t),

y′(t) = z(t),

(z(t) + Ω(z(t− r)))′ = −Ψ(x(t))z(t)− Φ(x(t))y(t) − h(x(t))

+

∫ t

t−σ

h′(x(s))y(s) ds+ e(t).

Theorem 3.1. In addition to the conditions of Theorem 2.1, assume there exists

a positive constant e1 such that

(ix)
∫ t

t0
|e(s)| ds < e1 for all t > t0.

Then there exists a positive constant N such that any solution of (3.1) satisfies

(3.2) |x(t)| 6 N, |y(t)| 6 N, and |Z(t)| 6 N.

P r o o f. On differentiating (2.1) along the solutions of system (3.1), we obtain

W ′

(3.1) 6 −λ5∆(t) + |e(t)|(d|x(t)| + d|y(t)|+ |Z(t)|)e
−η−1

∫
t

t1
ω(s) ds

.

Now, from (2.5) and applying the inequality |u| 6 u2 + 1, we find that

W ′

(3.1) 6 −λ5∆(t) + λ6|e(t)|(∆(t) + 3),

where λ6 = max{d, 1}. In view of (2.3), the above estimates imply that

(3.3) W ′

(3.1) 6 −λ5∆(t) +
λ6
λ1

|e(t)|W (t) + 3λ6|e(t)|.

An integration of (3.3) from t1 to t gives

W (t) 6 e2 +
λ6
λ1

∫ t

t1

W (s)|e(s)| ds

for some positive constant e2. An application of Gronwall’s inequality shows

that W (t) is bounded, and the conclusion of the theorem follows immediately. �
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4. Square integrability

Our next result concerns the square integrability of the solutions of equation (1.2).

Theorem 4.1. If all the conditions of Theorem 3.1 are satisfied, then for a solu-

tion x of (1.2)
∫

∞

t0

Γ(s) ds <∞.

P r o o f. From (2.8), we have

(4.1) V ′

(1.3) 6 λ3ω(t)(x
2(t) + y2(t)) − α1x

2(t)− α2y
2(t)− α3z

2(t)

6 λ3ω(t)(x
2(t) + y2(t)) − β1Γ(t),

where β1 = min{α1, α2, α3}. Therefore, from (2.1), (2.2), and (4.1), we have

W ′

(1.3) =
(

V ′

(1.3) −
1

η
ω(t)V

)

e
−η−1

∫
t

t1
ω(s) ds

6

(

λ3ω(t)(x
2(t) + y2(t))− β1Γ(t)−

λ0
η
ω(t)∆(t)

)

e
−η−1

∫
t

t1
ω(s) ds

.

Now

W ′

(3.1) =W ′

(1.3) + e(t)(dx(t) + dy(t) + Z(t))e
−η−1

∫
t

t1
ω(s) ds

,

and since λ0/η = λ3,

(4.2) W ′

(3.1) 6 −β2Γ(t) + |e(t)|(d|x(t)| + d|y(t)|+ |Z(t)|)e
−η−1

∫
t

t1
ω(s) ds

6 −β2Γ(t) +
(λ6
λ1
W (t) + 3λ6

)

|e(t)|,

where β2 = β1e
−nλ3/λ0 . Define H(t) by

(4.3) H(t) =W (t) + τ

∫ t

t1

Γ(s) ds ∀ t > t1,

where τ > 0 is a constant to be specified later. Differentiating H and using (4.2),

we obtain

H ′(t) 6 (τ − β2)Γ(t) +
(λ6
λ1
W (t) + 3λ6

)

|e(t)|.

Choosing τ − β2 < 0, then from the boundedness of W (t),

(4.4) H ′(t) 6 λ7|e(t)|
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for some λ7 > 0. Integrating (4.4) from t1 to t, and using condition (ix), we see

that H(t) is bounded. In view of (4.3), this implies that

∫

∞

t1

Γ(s) ds

is bounded, which is what we wished to show. �

R em a r k 4.2. Notice that by Theorem 4.1,

∫

∞

t1

(x2(s) + y2(s) + z2(s)) ds <∞

and consequently
∫

∞

t1

Z2(s) ds <∞,

i.e., the solutions of system (3.1) are square integrable.

We conclude this paper with an example to illustrate our results.

E x am p l e 4.3. Consider the third order neutral delay differential equation

(4.5)
(

x′′(t) +
1

100

x′′(t− r)

1 + ex′′(t−r)

)

′

+
( 1

10 + x2
+ 3.3

)

x′′ +
( cosx

4 + x2
+ 6.25

)

x′

+
(

2x(t− 1
10 ) +

x(t− 1
10 )

1 + |x(t− 1
10 )|

)

=
1

1 + t2
.

Taking d = 0.7, we see that

ψ0 = 2.6 = 3.3− 0.7 6 Ψ(x)− d =
1

10 + x2
+ 3.3− 0.7 6

1

10
+ 3.3− 0.7 = 2.7 = ψ1.

We also have

ϕ0 = 6 6 Φ(x) =
cosx

4 + x2
+ 6.25 6 6.5 = ϕ1

and

|Ω(x)| =
1

100

∣

∣

∣

x

1 + ex

∣

∣

∣
<

1

100
|x| = K|x|.

Now

h(x) = 2x+
x

1 + |x|
,

so h(0) = 0,

h(x)

x
> 2 = δ1 for x 6= 0, and |h′(x)| =

∣

∣

∣
2 +

1

(1 + |x|)2

∣

∣

∣
6 3 = δ0.
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Simple calculations show that

∫

∞

−∞

|Ψ′(u)| du =

∫

∞

−∞

∣

∣

∣

−2u

(10 + u2)2

∣

∣

∣
du = 2

∫

∞

0

2u

(10 + u2)2
du =

1

5

and
∫

∞

−∞

|Φ′(u)| du 6

∫

∞

−∞

(∣

∣

∣

sinu

4 + u2

∣

∣

∣
+
∣

∣

∣

2u cosu

(4 + u2)2

∣

∣

∣

)

du 6 π.

Hence, conditions (i)–(iv) hold.

If we take ε = K = 1
100 , it is easy to see that

− dδ1 +
1

2
(δ0K + dψ1) = −0.44 = −A,

δ0 − dϕ0 +
1

2
(d+K(d+ ϕ1)) = −0.814 = −B,

(d− ψ0) +
d

2
(ψ1 + 1) +

K

2
(3d+ ϕ1 + 2δ0 + 2ψ1) + ε = −0.495 = −C,

δ0
ϕ0

=
3

6
= 0.5 < 0.7 = d < min

{ψ0

3
,
ϕ0

2

}

= min
{2.6

3
, 3
}

≈ 0.867,

and so (v)–(viii) hold. Clearly, e(t) = 1/(1 + t2) satisfies

∫ t

0

|e(s)| ds <∞ ∀ t > t0,

so (ix) holds. Finally, if

σ = 0.1 <
2

δ0
min

{A

d
,

B

(3d+ 1 +K)
, C,

ε

K

}

≈ 0.1745,

then all the conditions of Theorems 2.1, 3.1, and 4.1 hold, so all solutions of equa-

tion (4.5) are bounded, x, x′, and x′′ are square integrable, and if e(t) ≡ 0, then the

zero solution of (4.5) is uniformly asymptotically stable.
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