[2] Agore, A. L.:
Hopf algebras which factorize through the Taft algebra $T_{m^2}(q)$ and the group Hopf algebra $K[C_n]$. SIGMA, Symmetry Integrability Geom. Methods Appl. 14 (2018), Article ID 027, 14 pages.
DOI 10.3842/SIGMA.2018.027 |
MR 3778923 |
Zbl 1414.16027
[7] Aguiar, M., Andruskiewitsch, N.:
Representations of matched pairs of groupoids and applications to weak Hopf algebras. Algebraic Structures and Their Representations Contemporary Mathematics 376 (2005), 127-173.
DOI 10.1090/conm/376 |
MR 2147019 |
Zbl 1100.16032
[13] Huang, H., Chen, H., Zhang, P.:
Generalized Taft algebras. Algebra Colloq. 11 (2004), 313-320.
MR 2081190 |
Zbl 1079.16026
[17] Maillet, E.:
Sur les groupes échangeables et les groupes décomposables. Bull. Soc. Math. Fr. 28 (1900), 7-16 French \99999JFM99999 31.0144.02.
DOI 10.24033/bsmf.617 |
MR 1504357
[20] Michor, P. W.:
Knit product of graded Lie algebras and groups. Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990), 171-175.
MR 1061798 |
Zbl 0954.17508
[24] Zappa, G.:
Sulla costruzione dei gruppi prodotto di dati sottogruppi permutabili tra loro. Atti 2. Congr. Un. Mat. Ital., Bologna 1942 (1942), 119-125 Italian.
MR 0019090 |
Zbl 0026.29104