Previous |  Up |  Next

Article

Keywords:
generalized Taft algebra; factorization problem; bicrossed product
Summary:
Let $G$ be a group generated by a set of finite order elements. We prove that any bicrossed product $H_{m,d}(q)\bowtie k[G]$ between the generalized Taft algebra $H_{m,d}(q)$ and group algebra $k[G]$ is actually the smash product $H_{m,d}(q)\sharp k[G]$. Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of $G$. As an application, the classification of $H_{m,d}(q)\bowtie k[ C_{n_1}\times C_{n_2}]$ is completely presented by generators and relations, where $C_n$ denotes the $n$-cyclic group.
References:
[1] Agore, A. L.: Classifying bicrossed products of two Taft algebras. J. Pure Appl. Algebra 222 (2018), 914-930. DOI 10.1016/j.jpaa.2017.05.014 | MR 3720860 | Zbl 1416.16033
[2] Agore, A. L.: Hopf algebras which factorize through the Taft algebra $T_{m^2}(q)$ and the group Hopf algebra $K[C_n]$. SIGMA, Symmetry Integrability Geom. Methods Appl. 14 (2018), Article ID 027, 14 pages. DOI 10.3842/SIGMA.2018.027 | MR 3778923 | Zbl 1414.16027
[3] Agore, A. L., Bontea, C. G., Militaru, G.: Classifying bicrossed products of Hopf algebras. Algebr. Represent. Theory 17 (2014), 227-264. DOI 10.1007/s10468-012-9396-5 | MR 3160722 | Zbl 1351.16031
[4] Agore, A. L., Chirvăsitu, A., Ion, B., Militaru, G.: Bicrossed products for finite groups. Algebr. Represent. Theory 12 (2009), 481-488. DOI 10.1007/s10468-009-9145-6 | MR 2501197 | Zbl 1187.20023
[5] Agore, A. L., Militaru, G.: Classifying complements for Hopf algebras and Lie algebras. J. Algebra 391 (2013), 193-208. DOI 10.1016/j.jalgebra.2013.06.012 | MR 3081628 | Zbl 1293.16026
[6] Agore, A. L., Năstăsescu, L.: Bicrossed products with the Taft algebra. Arch. Math. 113 (2019), 21-36. DOI 10.1007/s00013-019-01328-3 | MR 3960780 | Zbl 1447.16025
[7] Aguiar, M., Andruskiewitsch, N.: Representations of matched pairs of groupoids and applications to weak Hopf algebras. Algebraic Structures and Their Representations Contemporary Mathematics 376 (2005), 127-173. DOI 10.1090/conm/376 | MR 2147019 | Zbl 1100.16032
[8] Bontea, C. G.: Classifying bicrossed products of two Sweedler's Hopf algebras. Czech. Math. J. 64 (2014), 419-431. DOI 10.1007/s10587-014-0109-6 | MR 3277744 | Zbl 1322.16022
[9] Brzeziński, T.: Deformation of algebra factorisations. Commun. Algebra 29 (2001), 737-748. DOI 10.1081/AGB-100001537 | MR 1841995 | Zbl 1003.16024
[10] Caenepeel, S., Ion, B., Militaru, G., Zhu, S.: The factorization problem and the smash biproduct of algebras and coalgebras. Algebr. Represent. Theory 3 (2000), 19-42. DOI 10.1023/A:1009917210863 | MR 1755802 | Zbl 0957.16027
[11] Chen, X.-W., Huang, H.-L., Ye, Y., Zhang, P.: Monomial Hopf algebras. J. Algebra 275 (2004), 212-232. DOI 10.1016/j.jalgebra.2003.12.019 | MR 2047446 | Zbl 1071.16030
[12] Cibils, C.: A quiver quantum group. Commun. Math. Phys. 157 (1993), 459-477. DOI 10.1007/BF02096879 | MR 1243707 | Zbl 0806.16039
[13] Huang, H., Chen, H., Zhang, P.: Generalized Taft algebras. Algebra Colloq. 11 (2004), 313-320. MR 2081190 | Zbl 1079.16026
[14] Keilberg, M.: Automorphisms of the doubles of purely non-abelian finite groups. Algebr. Represent. Theory 18 (2015), 1267-1297. DOI 10.1007/s10468-015-9540-0 | MR 3422470 | Zbl 1354.16042
[15] Keilberg, M.: Quasitriangular structures of the double of a finite group. Commun. Algebra 46 (2018), 5146-5178. DOI 10.1080/00927872.2018.1461883 | MR 3923748 | Zbl 1414.16028
[16] Lu, D., Ning, Y., Wang, D.: The bicrossed products of $H_4$ and $H_8$. Czech. Math. J. 70 (2020), 959-977. DOI 10.21136/CMJ.2020.0079-19 | MR 4181790 | Zbl 07285973
[17] Maillet, E.: Sur les groupes échangeables et les groupes décomposables. Bull. Soc. Math. Fr. 28 (1900), 7-16 French \99999JFM99999 31.0144.02. DOI 10.24033/bsmf.617 | MR 1504357
[18] Majid, S.: Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130 (1990), 17-64. DOI 10.1016/0021-8693(90)90099-A | MR 1045735 | Zbl 0694.16008
[19] Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511613104 | MR 1381692 | Zbl 0857.17009
[20] Michor, P. W.: Knit product of graded Lie algebras and groups. Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990), 171-175. MR 1061798 | Zbl 0954.17508
[21] Radford, D. E.: On the coradical of a finite-dimensional Hopf algebra. Proc. Am. Math. Soc. 53 (1975), 9-15. DOI 10.1090/S0002-9939-1975-0396652-0 | MR 0396652 | Zbl 0324.16009
[22] Taft, E. J.: The order of the antipode of a finite-dimensional Hopf algebra. Proc. Natl. Acad. Sci. USA 68 (1971), 2631-2633. DOI 10.1073/pnas.68.11.2631 | MR 0286868 | Zbl 0222.16012
[23] Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras. Commun. Algebra 9 (1981), 841-882. DOI 10.1080/00927878108822621 | MR 0611561 | Zbl 0456.16011
[24] Zappa, G.: Sulla costruzione dei gruppi prodotto di dati sottogruppi permutabili tra loro. Atti 2. Congr. Un. Mat. Ital., Bologna 1942 (1942), 119-125 Italian. MR 0019090 | Zbl 0026.29104
Partner of
EuDML logo