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Abstract. Let G be a group generated by a set of finite order elements. We prove that
any bicrossed product Hm,d(q) ⊲⊳ k[G] between the generalized Taft algebra Hm,d(q) and
group algebra k[G] is actually the smash product Hm,d(q)♯k[G]. Then we show that the
classification of these smash products could be reduced to the description of the group
automorphisms of G. As an application, the classification of Hm,d(q) ⊲⊳ k[Cn1

× Cn2
] is

completely presented by generators and relations, where Cn denotes the n-cyclic group.
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1. Introduction

The factorization problem was firstly considered by Maillet (see [17]) and was

subsequently introduced to other mathematical objects for extensive research, such

as algebra (see [9]), coalgebra (see [10]), Lie algebra (see [20]), groupoids (see [7]),

Hopf algebra (see [19]), and so on. In the original setting, the factorization problem

is to describe and classify all groups X which can factor through groups G and H ,

that is X = GH , and G ∩ H = {1}. Although this problem seems very simple

and natural, there is still no comprehensive and feasible way to solve it, and even

describing and classifying a group which factors through two finite cycle groups is

still an open question.

An important step in dealing with the factorization problem for groups was the

bicrossed product construction introduced in the paper by Zappa (see [24]); later on,

Takeuchi discovered the same construction in [23], where the terminology bicrossed
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product was firstly brought up. The main ingredients in this construction are the

so-calledmatched pairs of groups. Subsequently, Majid in [18] generalized this notion

to the context of Hopf algebras, and considered a more computational approach of

the problem. The present paper is a contribution to the factorization problem for

Hopf algebras.

In paper [3], the authors proposed a strategy for classifying the bicrossed product

of Hopf algebras following the Majid’s construction. The method proposed in [3]

was followed in [8] to classify bicrossed products of two Sweedler’s Hopf algebras,

in [14], [15] to compute the automorphism of Drinfeld doubles of purely nonabelian

finite group and quasitriangular structure of the doubles of finite group, respectively;

then in [4] to classify bicrossed products of finite groups, in [5] to classify the comple-

ments for Hopf algebras and Lie algebras, in [1] to classify bicrossed products of two

Taft algebras, and finally in [2], [6] to classify bicrossed products of Taft algebras and

group algebras. In 2019, Lu, Ning and Wang in [16] described all Hopf algebras that

could factor through the Sweedler’s Hopf algebras and Kac-Paljutkin Hopf algebra

by generators and relations.

Motivated by the above results, in this paper we describe the bicrossed products

between the generalized Taft algebra Hm,d(q) and the group algebra k[G], where G

is a group which admits a generating set of consisting of finite order elements.

This paper is organized as follows. In Section 2, we recall basic definitions and facts

needed in this paper. In Section 3, we compute the bicrossed products Hm,d ⊲⊳ k[G].

Theorem 3.1 shows that any bicrossed product Hm,d ⊲⊳ k[G] is in fact a smash

product. In Section 4, as an application of the above theorem, we determine the

sufficient and necessary conditions for two different bicrossed productsHm,d♯k[G] and

Hm,d♯
′k[G] to be isomorphic via quadruple (u, p, r, v). Finally, we apply our theorem

to Hm,d(q) and group algebra k[Cn1
× Cn2

], where Cn denotes the n-cyclic group.

Throughout this paper, k is an arbitrary field of characteristic zero. Unless other-

wise specified, all algebras, coalgebras, bialgebra, Hopf algebra and homomorphisms

are over k. We put ⊗ shorthand for ⊗k. For a comultiplication of coalgebra C, we

use Sweedler’s notation ∆(c) = c1 ⊗ c2.

2. Preliminaries

In this section, we recall some basic definitions and results.

For any positive integer n, the cyclic group of all nth roots of unity in the field k is

denoted by Un(k) = {ω ∈ k : ωn = 1}; if the order is n for Un(k), then any generator

of Un(k) is called a primitive nth root of unity.

Let m, d > 2 be two fixed positive integers, d | m, and q ∈ k the primitive dth root

of unity. In [21] Radford considered the following Hopf algebraHm,d(q) (abbreviated
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as Hm,d) is generated by h, x as an algebra, subject to the following relations:

hm = 1, xd = 0, xh = qhx.

The coalgebra structure is given as follows:

∆(h) = h⊗ h, ∆(x) = x⊗ h+ 1⊗ x, ε(h) = 1,

ε(x) = 0, S(h) = h−1 = hm−1, S(x) = −xh−1.

Obviously {hixj : 0 6 i 6 m − 1, 0 6 j 6 d − 1} is basis of Hm,d, and G =

{1, h, h2, . . . , hm−1} is the set of group-like elements. For any j = {0, 1, . . . , d − 1},

the set of (hj , 1)-primitive elements is written as:

(2.1) Phj ,1(Hm,d) =

{

α(hj − 1), j 6= 1,

β(h− 1) + γx, j = 1,
α, β, γ ∈ k.

Remark 2.1. It is worthwhile to note that if d = m, then Hm,d = Hm,m is the

m2-dimensional Taft (Hopf) algebra (see [22]), the reason why Hm,d is called a gen-

eralized Taft algebra in [11], [13]. Specifically, H2,2 is the Sweedler’s Hopf algebraH4.

The Hopf algebraHm,d can be also approached by quiver and relations, that is, Hm,d

is isomorphic to the quiver quantum group KZm(q)/Id constructed by Cibils in [12].

A matched pair of Hopf algebras is a quadruple (A,H, ⊳, ⊲), where A and H are

Hopf algebras, and ⊳ : H ⊗ A → H , ⊲ : H ⊗ A → A are linear morphisms such

that (A, ⊲) is a left H-module coalgebra, (H, ⊳) is a right A-module coalgebra and

the following compatible conditions hold:

y ⊲ 1 = εH(h)1A, 1H ⊳ a = εA(a)1H ,(2.2)

y ⊲ (ab) = (y(1) ⊲ a(1))((y(2) ⊳ a(2)) ⊲ b),(2.3)

(yz) ⊳ a = y ⊳ (z(1) ⊲ a(1))(z(2) ⊳ a(2)),(2.4)

y(1) ⊳ a(1) ⊗ y(2) ⊲ a(2) = y(2) ⊳ a(2) ⊗ y(1) ⊲ a(1)(2.5)

for all a, b ∈ A, y, z ∈ H.

If (A,H, ⊳, ⊲) is a matched pair, the associated bicrossed product A ⊲⊳ H of A

and H is the vector space A ⊗ H endowed with the tensor product coalgebra and

the multiplication:

(a ⊲⊳ y)(b ⊲⊳ z) = a(y(1) ⊲ b(1)) ⊲⊳ (y(2) ⊳ b(2))z,

the antipode is

SA⊲⊳H(a ⊲⊳ y) = (1A ⊲⊳ SH(y)) · (SA(a) ⊲⊳ 1H).

In particular, assume that (A, ⊲) is a left H-module coalgebra. Meanwhile con-

sider H as a right A-module coalgebra with trivial action, namely y ⊳ a = εA(a)y.

Then (A,H, ⊳, ⊲) is a matched pair if and only if (A, ⊲) is left H-module algebra and
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the following condition holds:

y(1) ⊗ y(2) ⊲ a = y(2) ⊗ y(1) ⊲ a.

At this moment, the multiplication of A ⊲⊳ H becomes

(a ⊲⊳ y) · (b ⊲⊳ z) = a(y(1) ⊲ b) ⊲⊳ y(2)z

for all a, b ∈ A, y, z ∈ H . That is, A ⊲⊳ H is reduced to the smash product A♯H .

We say a Hopf algebra E factors through two Hopf algebras A and H if there exist

injective Hopf algebra maps i : A→ E and j : H → E, such that the following map

A⊗H → E, a⊗ y 7→ i(a)j(y)

is bijective.

Theorem 2.2 ([3]). Let A and H be two Hopf algebras. A Hopf algebra E

factors through A and H if and only if there exists a matched pair (A,H, ⊳, ⊲) and

an isomorphism E ∼= A ⊲⊳ H .

Theorem 2.3 ([3]). Let A, B and C be three coalgebras. Then there exists one

to one correspondence between coalgebra map α : A→ B⊗C and binary morphism

(u, p), where u : A→ B and p : A→ C are both coalgebra morphisms such that

p(a1)⊗ u(a2) = p(a2)⊗ u(a1)

for all a ∈ A. Furthermore, the correspondence relation is written as

α(a) = u(a1)⊗ p(a2).

Theorem 2.4 ([3]). Suppose A♯H and A′♯′H ′ are two smash products of Hopf

algebra with the left actions ⊲ : H ⊗A→ A and ⊲′ : H ′⊗A′ → A′ respectively, then

there exists a bijective correspondence between the set of all morphisms of Hopf

algebra ψ : A♯H → A′♯′H ′ and the set of all quadruples (u, p, r, v) , consisting of two

unitary coalgebra maps u : A → A′, and r : H → A′, and two Hopf algebra maps

p : A→ H ′, v : H → H ′ subject to the following compatibilities:

u(a(1))⊗ p(a(2)) = u(a(2))⊗ p(a(1)),(2.6)

r(g(1))⊗ v(g(2)) = r(g(2))⊗ v(g(1)),(2.7)

u(ab) = u(a(1))(p(a(2)) ⊲
′ u(b)),(2.8)

r(tg) = r(t(1))(v(t(2)) ⊲
′ r(g)),(2.9)

r(g(1))(v(g(2)) ⊲
′ u(b)) = u(g(1) ⊲ b(1))(p(g(2) ⊲ b) ⊲

′ r(g(3))),(2.10)

v(g)p(b) = p(g(1) ⊲ b)v(g(2))(2.11)

for all a, b ∈ A, g, t ∈ H .
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This correspondence is given by:

ψ(a♯g) = u(a(1))(p(a(2)) ⊲
′ r(g(1)))♯

′p(a(3))v(g(2))

for all a, b ∈ A, g, t ∈ H .

Finally, the following theorem is useful for later calculations which is intensively

used.

Theorem 2.5 ([1]). Consider a matched pair of Hopf algebras (A,H, ⊳, ⊲). Let

a, b ∈ G(A), g, h ∈ G(H), then

(1) g ⊲ a ∈ G(A), g ⊳ a ∈ G(H),

(2) if x ∈ Pa,1(A) then g ⊳ x ∈ Pg⊳a,g(A), g ⊲ x ∈ Pg⊲a,1(A),

(3) if y ∈ Pg,1(H) then y ⊳ a ∈ Pg⊳a,1(A), y ⊲ a ∈ Pg⊲a,a(A).

3. Bicrossed products of Hm,d and k[G]

In this section we discuss the bicrossed products of a generalized Taft algebraHm,d

and group algebra k[G], where G admits a generating set consisting of finite order el-

ements. At first we consider a special case: the bicrossed products ofHm,d and k[Cn],

where Cn = 〈g〉 is the n-cyclic group.

Theorem 3.1. Let (Hm,d, k[Cn], ⊳, ⊲) be a matched pair and Un(k) the set of nth

roots of unity; then there exists a bijective between matched pairs (Hm,d, k[Cn], ⊳, ⊲)

and Un(k). The actions are given by

gi ⊲ hjxk = ωikhjxk, gi ⊳ hjxk = giε(xk),

where ω ∈ Un(k), i = 0, 1, . . . , n− 1, j = 0, 1, . . . ,m− 1, and k = 0, 1, . . . , d− 1.

P r o o f. Let (Hm,d, k[Cn], ⊳, ⊲) be a matched pair. First of all, we have g ⊲ h = h,

since by Theorem 2.5, g ⊲ h ∈ G(Hm,d) = {1, h, . . . , hm−1}. If g ⊲ h = 1, by induction

we obtain 1 = gn ⊲ h = (gn−1g) ⊲ h = h, which is clearly a contradiction.

Then suppose g ⊲ h = ht, t ∈ {2, 3, . . . ,m − 1}, which implies g ⊲ x ∈ Pht,1.

Because t 6= 1, we have g ⊲ x = α(1− ht), α ∈ k, so g2 ⊲ x = g ⊲ (g ⊲ x) = α−αg ⊲ ht.

By induction, we know that x = gn ⊲ x = α − αgn−1 ⊲ ht. But we also obtain

gn−1 ⊲ ht ∈ G(Hm,d) = {1, h, . . . , hm−1}, which leads to a contradiction. Hence,

g ⊲ h = h, and g ⊲ x = α(1− h) + βx, α, β ∈ k. Thus, on one hand

g2 ⊲ x = g ⊲ g ⊲ x = g ⊲ α(1 − ht) = α(1 + β)(1 − h) + β2x.

Using induction

gn ⊲ x = α(1 + β + . . .+ βn−1)(1− h) + βnx.
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On the other hand, gn ⊲ x = 1 ⊲ x = x. So we have

βn = 1, α(1 + β + . . .+ βn−1) = 0.

Now consider the right action ⊳. Again by Theorem 2.5, g ⊳ h ∈ k[Cn] =

{1, g, . . . , gn−1}, hence, g ⊳ h = gt, t ∈ {0, 1, . . . , n − 1}. If g ⊳ h = 1, then

1 = g ⊳ hm = g ⊳ 1 = g, a contradiction. Therefore, g ⊳ h = gt, t ∈ {1, 2, . . . , n− 1},

and g ⊳ x ∈ Pgt,g(k[Cn]). Then by (2.1) we have g ⊳ x = µ(g − gt), µ ∈ k. The

condition (2.5) yields:

g(1) ⊳ x(1) ⊗ g(2) ⊲ x(2) = g(2) ⊳ x(2) ⊗ g(1) ⊲ x(1).

The above equation can be converted to

µg⊗ h−µgt ⊗ h+αg⊗ 1−αg⊗ h+ βg⊗ x = αgt ⊗ 1−αgt ⊗ h+ βgt ⊗ x+µgt ⊗ 1.

We observed that if t 6= 1, then β = 0, which is a contradiction to βn = 1, so we get

t = 1.

By the compatibility (2.3)

g ⊲ hx = (g ⊲ h)((g ⊲ h) ⊲ x) = h(g ⊲ x) = αh− αh2 + βhx,

g ⊲ xh = (g ⊲ x1)((g ⊳ x2) ⊲ h) = (g ⊲ x)((g ⊳ h) ⊲ h) = αh− αh2 + βxh.

Since xh = qhx, combined with the above results, we have

qαh− qαh2 + qβhx = αh− αh2 + βxh.

Because q 6= 1, so we know α = 0, thus g ⊲ x = βx. Again by induction for all

i ∈ {0, 1, . . . , n− 1}, j ∈ {0, 1, . . . ,m− 1}, l ∈ {0, 1, . . . , d− 1}, we have

g ⊳ hj = g, g ⊳ xl = gε(xl), gi ⊲ h = h, gi ⊲ x = βix, β ∈ Un(k).

By induction, we also have gi ⊳ h = gi, i ∈ {0, 1, . . . , n− 1}.

For any i ∈ {0, 1, . . . , n− 1}, j ∈ {0, 1, . . . ,m− 1}, further calculations include

gi ⊳ hj = gi.

The above equation and the condition (2.3) imply

gi ⊲ hj = hj .

By the condition (2.4)

g2 ⊳ x = (g ⊳ (g ⊲ x(1)))(g ⊳ x(2)) = (g ⊳ (g ⊲ x))(g ⊳ h) + (g ⊳ (g ⊲ 1))(g ⊳ x) = 0,

g3 ⊳ x = (g2 ⊳ (g ⊲ x(1)))(g ⊳ x(2)) = (g2 ⊳ (g ⊲ x))(g ⊳ h) + (g2 ⊳ (g ⊲ 1))(g ⊳ x) = 0.

And more generally

gi ⊳ xl = giε(xl).
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By further computations

gi ⊲ x2 = (gi ⊲ x(1))((g
i ⊳ x(2)) ⊲ x)

= (gi ⊲ x)((gi ⊳ h) ⊲ x) + (gi ⊲ 1)((gi ⊳ x) ⊲ x) = β2ix2,

gi ⊲ x3 = (gi ⊲ x(1))((g
i ⊳ x(2)) ⊲ x

2)

= (gi ⊲ x)((gi ⊳ h) ⊲ x2) + (gi ⊲ 1)((gi ⊳ x) ⊲ x2) = β3ix3.

Also by induction, we obtain

gi ⊲ xl = βilxl.

To sum up:

gi ⊲ hjxl = (gi ⊲ hj)((gi ⊳ hj) ⊲ xl) = hj(gi ⊲ xl) = βilhjxl,

gi ⊳ hjxl = gi ⊳ hj ⊳ xl = gi ⊳ xl = giε(xl).

The proof is completed. �

Corollary 3.2. A Hopf algebra E could factorize through Hm,d and k[Cn] if and

only if E ∼= Tω
nmd(q), where ω ∈ Un(k), and T

ω
nmd(q) is a Hopf algebra generated

by g, h, and x, subject to:

gn = hm = 1, xd = 0, xh = qhx, hg = gh, gx = ωxg.

The coalgebra structure is

∆(g) = g⊗g, ∆(h) = h⊗h, ∆(x) = x⊗h+1⊗x, ε(h) = ε(g) = 1, ε(x) = 0.

and the antipode is

S(x) = −xhm−1, S(h) = hm−1, S(g) = gn−1.

P r o o f. By Theorem 2.2, E ∼= Hm,d ⊲⊳ k[Cn], and by Theorem 3.1, the action

⊲ : Hm,d(q)⊗ k[Cn] → k[Cn]

is trivial. Thus, E is isomorphic to the smash productHm,d♯k[Cn], which is generated

by h = h♯1, x = x♯1, and g = 1♯g. Therefore,

gh = (1♯g)(h♯1) = g ⊲ h♯g ⊳ h = h♯g = (h♯1)(1♯g) = hg,

gx = (1♯g)(x♯1) = g ⊲ x1♯g ⊳ x2 = g ⊲ x♯g ⊳ h+ g ⊲ 1♯g ⊳ x = ωx♯g = ωxg.

�
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Remark 3.3. It is easy to see that

{gihjxk : 0 6 i 6 n− 1, 0 6 j 6 m− 1, 0 6 k 6 d− 1}

is the basis of Hω
nmd. Thus, H

ω
nmd is nmd-dimensional.

The main theorem of this paper is given as follows:

Theorem 3.4. Let G be a group generated by finite order elements. If a Hopf

algebra E factorizes through Hm,d and k[G], then E is isomorphic to the smash

product of Hm,d and k[G].

P r o o f. Let G be a group generated by a set S of finite order elements. Assume

g ∈ S and ord(g) = u, where u ∈ N∗. Assume (Hm,d, k[G], ⊳, ⊲) is a matched pair;

by Theorem 3.1, we get g⊲h = h. Hence, g⊲x = α(1−h)+βx, α, β ∈ k, and we have

α(1 + β + . . .+ βu−1) = 0, βu = 1.

Since g ⊳ h ∈ G(k[G]) and g ⊳ h 6= 1, thus g ⊳ h = ga1

i1
ga2

i2
. . . gas

is
, where

s, a1, . . . , as ∈ N∗, gi1 , . . . , gis ∈ S, so we get

g ⊳ x ∈ Pg⊳h,g⊳1(k[G]) = Pg
a1

i1
g
a2

i2
...gas

is
,g(k[G]),

that is

g ⊳ x = γ(g − ga1

i1
ga2

i2
. . . gas

is
), γ ∈ k.

Applying compatibility (2.5) we obtain

g ⊳ x⊗ h+ g ⊗ g ⊲ x = g ⊳ h⊗ g ⊲ x+ g ⊳ x⊗ 1.

By further calculation

γg ⊗ h− γga1

i1
ga2

i2
. . . gas

is
⊗ h+ αg ⊗ 1− αg ⊗ h+ βg ⊗ x

= αga1

i1
ga2

i2
. . . gas

is
⊗ 1− αga1

i1
ga2

i2
. . . gas

is
⊗ h+ βga1

i1
ga2

i2
. . . gas

is
⊗ x

+ γg ⊗ 1− γga1

i1
ga2

i2
. . . gas

is
⊗ 1.

So

βg ⊗ x = βga1

i1
ga2

i2
. . . gas

is
⊗ x.

Since βu = 1 implies β 6= 0, ga1

i1
ga2

i2
. . . gas

is
= g; therefore, g ⊳ h = g and g ⊳ x = 0.

According to condition (2.3)

g ⊲ hx = (g ⊲ h)((g ⊳ h) ⊲ x) = h(g ⊲ x) = α(h− h2) + βhx,

g ⊲ xh = (g ⊲ x(1))((g ⊳ x(2)) ⊲ h) = α(h− h2) + βxh = α(h− h2) + βqhx.
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By the relation xh = qhx,

qαh− qαh2 + qβhx = αh− αh2 + βxh.

Since q 6= 1, we obtain α = 0; therefore, g ⊲ x = βx.

Applying the similar method for any gi ∈ S with order ui, we have

gi ⊲ h = h, gi ⊲ x = βix, gi ⊳ h = gi, gi ⊳ x = 0, βi ∈ Uui
(k).

For all gi ∈ S,

g2i ⊳ h = (gi(gi ⊲ h))(gi ⊳ h) = (gi ⊳ h)(gi ⊳ h) = g2i .

By induction one can see that for all v ∈ {0, 1, . . . , ui − 1},

gvi ⊳ h = gvi ,

and for any j ∈ {0, 1, . . . ,m− 1},

gvi ⊳ h
j = gvi .

Similarly we have

gvi ⊲ h
j = hj .

By the condition (2.4),

gv1i1 g
v2
i2
⊳ hj = (gv1i1 ⊳ (g

v2
i2
⊲ hj))(gv2i2 ⊳ h

j) = (gv1i1 ⊳ h
j)(gv2i2 ⊳ h

j) = gv1i1 g
v2
i2

for all gv1i1 , g
v2
i2

∈ S, v1 ∈ {0, 1, . . . , ui1 − 1}, v2 ∈ {0, 1, . . . , ui2 − 1}. By further

computation we obtain

gv1i1 g
v2
i2
. . . gvtit ⊳ h

j = gv1i1 g
v2
i2
. . . gvtit ,

where gvlil ∈ S, vl ∈ {0, 1, . . . , uil − 1}, l ∈ {1, 2, . . . , t}.

Now let us calculate the right action of x on S.

g2i ⊳ x
(2.4)
= (gi ⊳ (gi ⊲ x(1)))(gi ⊳ x(2)) = (gi ⊳ (gi ⊲ x))(gi ⊳ h) + (gi ⊳ (gi ⊲ 1))(gi ⊳ x) = 0,

g3i ⊳ x = (g2i · gi) ⊳ x = 0.

Again by induction we get

gvi ⊳ x
j = 0

for all v ∈ {0, 1, . . . , ui − 1}, j ∈ {1, 2, . . . , d− 1}. In fact, we have

gvi ⊳ x
j = gvi ε(x

j).
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Similarly to the previous calculation

gv1i1 g
v2
i2
. . . gvtit ⊳ x

j = gv1i1 g
v2
i2
. . . gvtit ε(x

j)

for all gil ∈ S, vl ∈ {0, 1, . . . , uil − 1}, l ∈ {0, 1, . . . , t}. And

gv1i1 g
v2
i2
. . . gvtit ⊳ h

jxj
′

= (gv1i1 g
v2
i2
. . . gvtit ⊳ h

j) ⊳ xj
′

= gv1i1 g
v2
i2
. . . gvtit ε(x

j′ )

= gv1i1 g
v2
i2
. . . gvtit ε(h

jxj
′

),

which shows that the right action is indeed trivial. The proof is completed. �

As an application, we consider a special case when G = Cn1
× Cn2

.

Corollary 3.5. Let g1 and g2 be the generating element of Cn1
and Cn2

,

respectively. There is a bijective correspondence between the matched pairs

(Hm,d, k[Cn1
× Cn2

], ⊳, ⊲) and Un1
(k) × Un2

(k). Explicitly for any β1 ∈ Un1
(k),

β2 ∈ Un2
(k), the correspondence is given by

(gt11 , g
t2
2 ) ⊲ hjxk = βt1k

1 βt2k
2 hjxk, (gt11 , g

t2
2 ) ⊳ hjxk = gt11 g

t2
2 ε(h

jxk)

for all t1 ∈ {0, 1, . . . , n1 − 1}, t2 ∈ {0, 1, . . . , n2 − 1}, j ∈ {0, 1, . . . ,m − 1}, k ∈

{0, 1, . . . d−1}. Moreover, the bicrossed product Hm,d ⊲⊳ k[Cn1
×Cn2

]) is isomorphic

to Hβ1,β2

n1n2md, which is a Hopf algebra generated by g1, g2, h and x subject to the

following relations

gn1

1 = gn2

2 = hm = 1, xd = 0, g1h = hg1, g2h = hg2,

g1x = β1xg1, g2x = β2xg2, xh = qhx.

Its coalgebra structure and the antipode are given as follows:

∆(g1) = g1 ⊗ g1, ∆(g2) = g2 ⊗ g2, ∆(h) = h⊗ h, ∆(x) = x⊗ h+ 1⊗ x, ε(x) = 0,

ε(g1) = ε(g2) = ε(h) = 1, S(g1) = gn1−1
1 , S(g2) = gn2−1

2 , S(x) = −xhm−1.

P r o o f. Since (Hm,d, k[Cn1
×Cn2

], ⊳, ⊲) is a matched pair, from Theorem 3.4 we

know the right action is trivial, and

gt11 ⊲ h = h, gt11 ⊲ x = βt1
1 x, gt22 ⊲ h = h, gt22 ⊲ x = βt2

2 x,

where t1 ∈ {0, 1, . . . , n1 − 1}, t2 ∈ {0, 1, . . . , n2 − 1}. By the relation (2.3) we get

gt11 ⊲ hj = hj ,

as gt11 ⊲ x = βt1
1 x by induction we know

gt11 ⊲ xj = βt1j
1 xj .
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Therefore,

gt11 ⊲ hjxk
(2.3)
= (gt11 ⊲ hj)((gt11 ⊳ hj) ⊲ xk) = hj(gt11 ⊲ xk) = βt1k

1 hjxk.

For g2 we have the similar results

gt22 ⊲ hj = hj , gt22 ⊲ xj = βt2j
2 xj ,

where j ∈ {0, 1, . . . , d − 1}. Hence, (gt11 , g
t2
2 ) ⊲ hjxk = βik

1 β
ik
2 h

jxk. The proof is

completed. �

Remark 3.6. In Corollary 3.5, if n2 = 1, then we could obtain Theorem 3.1.

4. The isomorphism between the bicrossed products of Hm,d and k[G]

In this section we describe the isomorphism of Hm,d ⊲⊳ k[G], where G is a group

generated by finite order elements. By Theorem 3.4, Hm,d ⊲⊳ k[G] is actually the

smash product between them.

Theorem 4.1. Let Hm,d♯k[G] and Hm,d♯
′k[G] be two smash products, then

there exists one to one correspondence between Hopf algebra isomorphism ϕ :

Hm,d♯k[G] → Hm,d♯
′k[G] and triple (u, r, v), where u : Hm,d→Hm,d, r : k[G]→Hm,d

are unital coalgebra maps, and v : k[G] → k[G] is an automorphism of Hopf algebra,

such that

ϕ(a♯t) = u(a)r(t(1))♯
′v(t(2))

for all a ∈ Hm,d, t ∈ k[G].

P r o o f. Let S = {gi ∈ G : i ∈ I} be the generating set of G, where I is the index

set and ord(gi) = ui for all i ∈ I. Denote the left actions in the smash products

Hm,d♯k[G] and Hm,d♯
′k[G] by ⊲ : k[G] ⊗ Hm,d → Hm,d, ⊲

′ : k[G] ⊗ Hm,d → Hm,d

respectively. By Theorem 3.3 for all i ∈ I,

gi ⊲ h = h, gi ⊲ x = αix, gi ⊲
′ h = h, gi ⊲

′ x = αix,

where αi, αi ∈ Uui
(k).

From Theorem 2.3 we know there is a one to one correspondence between

a Hopf morphism ϕ : Hm,d♯k[G] → Hm,d♯
′k[G] and quadruple (u, p, r, v), where

u : Hm,d → Hm,d, r : k[G] → Hm,d are coalgebra maps, and p : Hm,d → k[G],

v : k[G] → k[G] are Hopf algebra maps.
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We claim that p : Hm,d → k[G] is trivial, i.e., p = ε. Indeed since p(h) ∈ G(k[G]),

we get p(h) = ga1

i1
ga2

i2
. . . gas

is
for all s, a1, . . . as ∈ N , ga1

i1
, . . . gas

is
∈ S, and p(x) ∈

Pp(h),1(k[G]). By relation (2.1) we have p(x) = β(ga1

i1
ga2

i2
. . . gas

is
− 1) for all β ∈ k.

Hence,

p(hx) = p(h)p(x) = βga1

i1
ga2

i2
. . . gas

is
(ga1

i1
ga2

i2
. . . gas

is
− 1)

= β(ga1

i1
ga2

i2
. . . gas

is
− 1)ga1

i1
ga2

i2
. . . gas

is
= p(xh).

Due to p(xh) = qp(hx), β(q − 1)ga1

i1
ga2

i2
. . . gas

is
(ga1

i1
ga2

i2
. . . gas

is
− 1) = 0. Since q 6= 1,

we have β(ga1

i1
ga2

i2
. . . gas

is
− 1) = 0, i.e., p(x) = 0.

Because u : Hm,d → Hm,d is a coalgebra map, we have u(1) = 1, u(h) = hc,

c ∈ {0, 1, . . .m− 1}. So

u(h2) = u(h · h) = u(h)(p(h) ⊲′ u(h)) = hc(ga1

i1
ga2

i2
. . . gas

is
− 1 ⊲′ hd) = h2c.

It is easy to get u(hj) = hjc, so u(x) ∈ Phc,1(Hm,d). In other words, when c 6= 1,

u(x) = µ(hc − 1); when c = 1, u(x) = µ(h− 1) + γx for µ, γ ∈ k.

Firstly, suppose c 6= 1, u(x) = µ(hc − 1), then we have

u(hx) = u(h)(p(h) ⊲′ u(x)) = hd(ga1

i1
ga2

i2
. . . gas

is
− 1 ⊲′ µ(hc − 1)) = µhc(hc − 1),

u(xh) = u(x1)(p(x2) ⊲
′ u(h)) = u(x)(p(h) ⊲′ u(h)) + p(x) ⊲′ u(h) = µhc(hc − 1).

As u(xh) = qu(hx), from the above identity, we get µ(q − 1)hd(hc − 1) = 0. But

q 6= 1, so µ(hc − 1) = 0, u(x) = 0. And

ψ(x♯1) = u(x(2))(p(x(2)) ⊲
′ r(1))♯p(x(3))v(1) = u(x(1))♯p(x(2))

= u(x)♯p(h) + 1♯p(x) = 0,

which is a contradiction to the assumption that ψ is an bijective. Hence, we have

c = 1, u(x) = µ(h− 1) + γx.

Similarly, we have

u(hx) = u(h)(p(h) ⊲′ u(x)) = h[ga1

i1
ga2

i2
. . . gas

is
⊲′ (µ(h− 1) + γx)]

= µh(h− 1) + γαa1

i1
αa2

i2
. . . αas

is
,

u(xh) = µh(h− 1) + γqhx.

Since u(xh) = qu(hx), we can obtain µ = qµ and qγαa1

i1
αa2

i2
. . . αas

is
= qγ. Due to

q 6= 1, we have µ = 0, γ 6= 0 and αa1

i1
αa2

i2
. . . αas

is
= 1. In fact, if γ = 0, then u(x) = 0,

which is a contradiction. Therefore,

u(hi) = hi, u(xj) = γjxj ,

where γ ∈ k∗, i ∈ {0, 1, . . .m− 1}, j ∈ {0, 1, . . . , d− 1}.
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Set a = x. From condition u(a(1))⊗ p(a(2)) = u(a(2))⊗ p(a(1)), we have

u(x(1))⊗ p(x(2)) = u(x(2))⊗ p(x(1))

⇔ u(x)⊗ p(h) + u(1)⊗ p(x) = u(h)⊗ p(x) + u(x)⊗ p(1)

⇔ γx⊗ ga1

i1
ga2

i2
. . . gas

is
= γx⊗ 1.

From the above we get γ 6= 0, so ga1

i1
ga2

i2
. . . gas

is
= 1, therefore, p(x) = 0, p(h) = 1,

which implies that p is trivial. Hence, the mentioned quadruple becomes (u, ε, r, v)

and for all a♯t ∈ Hm,d♯k[G],

ψ(a♯t) = u(a)r(t(1))♯
′v(t(2)).

Next we show that v is an automorphism of Hopf algebra. Consider the inverse

ϕ : Hm,d♯
′k[G] → Hm,d♯k[G] of ψ given by

ϕ(a♯′t) = ū(a)r̄(t(1))♯v(t(2)).

Then for any t ∈ k[G],

1♯′t = ψ ◦ ϕ(1♯′t) = ψ(r̄(t(1))♯v(t(2))) = u(r̄(t(1)))r(v(t(2)))♯
′v(v(t(3))).

Applying ε ⊗ Id role in the above equation, we can get v ◦ v(t) = t. On the other

hand, we can obtain v ◦ v(t) = t. Thus, v is an automorphism of a Hopf algebra.

The proof is completed. �

Theorem 4.2. With the Hopf algebras Hβ1,β2

n1n2md and H
β1,β2

n1n2md defined in Corol-

lary 3.5, then Hβ1,β2

n1n2md and H
β1,β2

n1n2md are isomorphic if and only if the following

conditions hold:

m | n1l1, m | n2l2, (t1, n1) = 1, (t2, n2) = 1, β1
t1

= β1q
l1 , β2

t2
= β2q

l2 ,

where t1 ∈ {0, 1, . . . n1 − 1}, t2 ∈ {0, 1, . . . n2 − 1}, l1, l2 ∈ {0, 1, . . .m− 1}.

P r o o f. From Theorem 4.1 we know that any isomorphism ψ : Hβ1,β2

n1n2md →

Hβ1,β2

n1n2md corresponds to a triple (u, r, v), where v ∈ AutHopf(k[Cn1
× Cn2

]), and

since p is trivial, the equation (2.8) implies that u : Hm,d → Hm,d is a Hopf algebra

map satisfying

u(hixj) = u(hi)u(xj) = γjhixj , γ ∈ k∗.

Since k[Cn1
× Cn2

] is cocommutative, some compatibility conditions are auto

satisfied. The morphims v and r are determined completely by integers t1 ∈

{0, 1, . . . n1 − 1}, t2 ∈ {0, 1, . . . n2 − 1}, l1, l2 ∈ {0, 1, . . .m− 1} such that

v(g1) = gt11 , v(g2) = gt22 , r(g1) = hl1 , r(g2) = hl2 ,

where (t1, n1) = 1, (t2, n2) = 1.
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By the condition (2.9) and induction, we obtain r(gi1) = hil1 . In particular, we

have 1 = r(gn1

1 ) = hn1l1 and m | n1l1. Consider b = x, the compatibility

r(g(1))(v(g(2)) ⊲
′ u(b)) = u(g(1) ⊲ b(1))(p(g(2) ⊲ b(2)) ⊲

′ r(g(3) ⊳ b(3)))

becomes

r(g1)(v(g1) ⊲
′ u(x)) = u(g1 ⊲ x)r(g1) ⇔ hl1(gt1 ⊲′ γx) = u(β1x)h

l1

⇔ γβ1
t1
hl1x = γjβ1xh

l1

⇔ γβ1
t1
hl1x = γjβ1q

l1hl1x.

So we get β1
t1

= β1q
l1 . Similarly for g2 we have m | n2l, β2

t2
= β2q

l2 . This proves

the necessity.

Now we prove sufficiency. Construct a coalgebra map rl1,l2 : k[Cn1
×Cn2

] → Hm,d

and a Hopf algebra automorphism vt1,t2 : k[Cn1
×Cn2

] → k[Cn1
×Cn2

] for all i, j ∈ N

such that

rl1,l2(g
i
1) = hil1 , rl1,l2(g

j
2) = hjl2 , vt1,t2(g1) = gt11 , vt1,t2(g2) = gt22 .

We prove that the following map is an automorphism of a Hopf algebra:

ϕ : Hβ1,β2

n1n2md → Hβ1,β2

n1n2md, ϕ(a♯y) = arl1,l2(y1)♯vt1,t2(y2).

At first, it is straightforward to check that ϕ is a Hopf algebra map. Now we are

going to show ϕ is bijective.

As (t1, n1) = 1, so τt1 + n1τ
′ = 1, where τ, τ ′ ∈ Z, and there are unique integers

α, β, η ∈ Z, l1 ∈ {0, 1, . . . ,m− 1} such that

τ = ηn1 + τ ′, −l1τ1 = βm+ l1.

Define a coalgebra map rl1,l2 : k[Cn1
×Cn2

] → Hm,d, and a Hopf algebra map vτ1,τ2 :

k[Cn1
× Cn2

] → k[Cn1
× Cn2

] by

rl1,l2(g
k
1 ) = hkl1 , rl1,l2(g

k
2 ) = hkl2 , vτ1,τ2(g1) = gτ1, vτ1,τ2(g2) = gτ2.

Define ϕ : Hβ1,β2

n1n2md → Hβ1,β2

n1n2md, ϕ(a♯y) = arl1,l2(y1)♯vτ1,τ2(y2). Then we have

ϕ ◦ ϕ((hixj♯gk1

1 )) = ϕ(hixjrl1,l2(g
k
1 )♯vτ1,τ2(g

k
1 )) = ϕ(hixjhkl1♯gkτ11 )

= hixjhkl1rl1,l2(g
kτ1
1 )♯vt1,t2(g

kτ1
1 ) = hixjhkl1hkτ1l1♯gkτ1t11

= hixjhkl1+kτ1l1♯g
k(τ−ηn1)t1
1 = hixjhk(l1+τ1l)♯gkτt11

= hixjhkβm♯g
k(1−n1τ

′)
1 = hixj♯gk1 ,

for all i ∈ {0, 1, . . . ,m − 1}, j ∈ {0, 1, . . . , d − 1} and k ∈ {0, 1, . . . n1 − 1}. Thus,

ϕ ◦ ϕ = Id. Similarly, we have ϕ ◦ ϕ = Id. The proof is completed. �

814



Example 4.3. Consider the following data:

m = 6, d = 2, q = −1; n1 = 4, t1 = 3, l1 = 3; n2 = 18, t2 = 5, l2 = 2;

β1 = i, β2 = ei10π/9, β1 = i, β2 = ei2π/9,

where i denotes the imaginary unit. It is straightforward to check that the above

data satisfy the conditions in Theorem 4.2.

Define a coalgebra map r : k[C4 ×C18] → H6,2 and a Hopf algebra automorphism

v : k[C4 × C18] → k[C4 × C18] by

r(gi1) = h3i, r(gj2) = h2j , v(g1) = g31 , v(g2) = g52 .

Then we have the an automorphism of a Hopf algebra ϕ : Hβ1,β2

n1n2md → Hβ1,β2

n1n2md as

follows:

ϕ(hixjgk1

1 gk2

2 ) = hixjr(gk1

1 gk2

2 )v(gk1

1 gk2

2 )
(2.9)
= hixjr(gk1

1 )(v(gk1

1 ) ⊲′ (gk2

2 ))v(gk1

1 )v(gk2

2 )

= hixjh3k1(g3k1

1 ⊲′ h2k2)g3k1

1 g5k2

2 = hixjh3k1+2k2g3k1

1 g5k2

2

= (−1)jk1hi+3k1+2k2xjg3k1

1 g5k2

2 .

Remark 4.4. In Theorem 4.2, assume (n1, n2) = 1. Since the group Cn1
× Cn2

is commutative, we deduce that Cn1
× Cn2

is a cycle group generated by (g1, g2) of

order n1n2. In this case, Theorem 3.5 of [2] could be applied.

Acknowledgments. The authors are very grateful to the referee for their valu-

able comments.
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