Previous |  Up |  Next

Article

Keywords:
infinite linear system; group inverse; Moore-Penrose inverse; EP endomorphism
Summary:
The aim of this note is to offer an algorithm for studying solutions of infinite linear systems associated with group inverse endomorphisms. As particular results, we provide different properties of the group inverse and we characterize EP endomorphisms of arbitrary vector spaces from the coincidence of the group inverse and the Moore-Penrose inverse.\looseness -1
References:
[1] Sánchez, V. Cabezas, Romo, F. Pablos: Explicit solutions of infinite systems of linear equations from reflexive generalized inverses of finite potent endomorphisms. Linear Algebra Appl. 559 (2018), 125-144. DOI 10.1016/j.laa.2018.09.004 | MR 3857542 | Zbl 1403.15002
[2] Sánchez, V. Cabezas, Romo, F. Pablos: Moore-Penrose inverse of some linear maps on infinite-dimensional vector spaces. Electron. J. Linear Algebra 36 (2020), 570-586. DOI 10.13001/ela.2020.4979 | MR 4148552 | Zbl 1451.15003
[3] S. L. Campbell, C. D. Meyer, Jr.: Generalized Inverses of Linear Transformations. Classics in Applied Mathematics 56. SIAM, Philadelphia (2009). DOI 10.1137/1.9780898719048 | MR 3396208 | Zbl 1158.15301
[4] Cheng, S., Tian, Y.: Two sets of new characterizations for normal and EP matrices. Linear Algebra Appl. 375 (2003), 181-195. DOI 10.1016/S0024-3795(03)00650-5 | MR 2013464 | Zbl 1054.15022
[5] Drazin, M. P.: Pseudo-inverses in associative rings and semigroups. Am. Math. Mon. 65 (1958), 506-514. DOI 10.2307/2308576 | MR 0098762 | Zbl 0083.02901
[6] Romo, F. Pablos: Group inverse of finite potent endomorphisms on arbitrary vector spaces. Oper. Matrices 14 (2020), 1029-1042. DOI 10.7153/oam-2020-14-64 | MR 4207170 | Zbl 07446808
[7] Robert, P.: On the group-inverse of a linear transformation. J. Math. Anal. Appl. 22 (1968), 658-669. DOI 10.1016/0022-247X(68)90204-7 | MR 0229658 | Zbl 0159.32101
Partner of
EuDML logo