[4] Albertson, M. O., Berman, D. M.:
Ramsey graphs without repeated degrees. Proceedings of the Twenty-Second Southeastern Conference on Combinatorics, Graph Theory, and Computing Congressus Numerantium 83. Utilitas Mathematica Publishing, Winnipeg (1991), 91-96.
MR 1152082 |
Zbl 0765.05073
[6] Dimitrov, D., Réti, T.: Graphs with equal irregularity indices. Acta Polytech. Hung. 11 (2014), 41-57.
[8] Fath-Tabar, G. H.:
Old and new Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem. 65 (2011), 79-84.
MR 2797217 |
Zbl 1265.05146
[11] Gutman, I., Hansen, P., Mélot, H.:
Variable neighborhood search for extremal graphs 10. Comparison of irregularity indices for chemical trees. J. Chem. Inf. Model. 45 (2005), 222-230.
DOI 10.1021/ci0342775
[12] Hansen, P., Mélot, H.:
Variable neighborhood search for extremal graphs 9. Bounding the irregularity of a graph. Graphs and Discovery DIMACS Series in Discrete Mathematics and Theoretical Computer Science 69. AMS, Providence (2005), 253-264.
MR 2193452 |
Zbl 1095.05019
[15] Luo, W., Zhou, B.:
On the irregularity of trees and unicyclic graphs with given matching number. Util. Math. 83 (2010), 141-147.
MR 2742282 |
Zbl 1242.05223
[16] Nasiri, R., Fath-Tabar, G. H.:
The second minimum of the irregularity of graphs. Extended Abstracts of the 5th Conference on Algebraic Combinatorics and Graph Theory (FCC) Electronic Notes in Discrete Mathematics 45. Elsevier, Amsterdam (2014), 133-140.
DOI 10.1016/j.endm.2013.11.026 |
Zbl 1338.05049
[19] Réti, T., Sharafdini, R., Drégelyi-Kiss, Á., Haghbin, H.:
Graph irregularity indices used as molecular descriptors in QSPR studies. MATCH Commun. Math. Comput. Chem. 79 (2018), 509-524.
MR 3754230 |
Zbl 1472.92338
[20] Tavakoli, M., Rahbarnia, F., Mirzavaziri, M., Ashrafi, A. R., Gutman, I.:
Extremely irregular graphs. Kragujevac J. Math. 37 (2013), 135-139.
MR 3073703 |
Zbl 1299.05060
[21] Vukičević, D., Gašperov, M.: Bond additive modeling 1. Adriatic indices. Croat. Chem. Acta 83 (2010), 243-260.