Article
Keywords:
Sekine quantum group; representation ring; Casimir number
Summary:
We first describe the Sekine quantum groups $\mathcal {A}_{k}$ (the finite-dimensional Kac algebra of Kac-Paljutkin type) by generators and relations explicitly, which maybe convenient for further study. Then we classify all irreducible representations of $\mathcal {A}_{k}$ and describe their representation rings $r(\mathcal {A}_{k})$. Finally, we compute the the Frobenius-Perron dimension of the Casimir element and the Casimir number of $r(\mathcal {A}_{k})$.
References:
[3] Kac, G. I., Paljutkin, V. G.:
Finite ring groups. Trans. Mosc. Math. Soc. 15 (1966), 251-294.
MR 0208401 |
Zbl 0218.43005
[4] Lorenz, M.:
Some applications of Frobenius algebras to Hopf algebras. Groups, Algebras and Applications Contemporary Mathematics 537. AMS, Providence (2011), 269-289.
DOI 10.1090/conm/537 |
MR 2799106 |
Zbl 1254.16014