Previous |  Up |  Next

Article

Keywords:
Sekine quantum group; representation ring; Casimir number
Summary:
We first describe the Sekine quantum groups $\mathcal {A}_{k}$ (the finite-dimensional Kac algebra of Kac-Paljutkin type) by generators and relations explicitly, which maybe convenient for further study. Then we classify all irreducible representations of $\mathcal {A}_{k}$ and describe their representation rings $r(\mathcal {A}_{k})$. Finally, we compute the the Frobenius-Perron dimension of the Casimir element and the Casimir number of $r(\mathcal {A}_{k})$.
References:
[1] Etingof, P., Ostrik, V.: Finite tensor categories. Mosc. Math. J. 4 (2004), 627-654. DOI 10.17323/1609-4514-2004-4-3-627-654 | MR 2119143 | Zbl 1077.18005
[2] Franz, U., Skalski, A.: On idempotent states on quantum groups. J. Algebra 322 (2009), 1774-1802. DOI 10.1016/j.jalgebra.2009.05.037 | MR 2543634 | Zbl 1176.43005
[3] Kac, G. I., Paljutkin, V. G.: Finite ring groups. Trans. Mosc. Math. Soc. 15 (1966), 251-294. MR 0208401 | Zbl 0218.43005
[4] Lorenz, M.: Some applications of Frobenius algebras to Hopf algebras. Groups, Algebras and Applications Contemporary Mathematics 537. AMS, Providence (2011), 269-289. DOI 10.1090/conm/537 | MR 2799106 | Zbl 1254.16014
[5] Sekine, Y.: An example of finite-dimensional Kac algebras of Kac-Paljutkin type. Proc. Am. Math. Soc. 124 (1996), 1139-1147. DOI 10.1090/S0002-9939-96-03199-1 | MR 1307564 | Zbl 0845.46031
[6] Vaes, S., Vainerman, L.: Extensions of locally compact quantum groups and the bicrossed product construction. Adv. Math. 175 (2003), 1-101. DOI 10.1016/S0001-8708(02)00040-3 | MR 1970242 | Zbl 1034.46068
[7] Wang, Z., Li, L., Zhang, Y.: A criterion for the Jacobson semisimplicity of the Green ring of a finite tensor category. Glasg. Math. J. 60 (2018), 253-272. DOI 10.1017/S0017089517000246 | MR 3733845 | Zbl 1444.16025
[8] Zhang, H.: Idempotent states on Sekine quantum groups. Commun. Algebra 47 (2019), 4095-4113. DOI 10.1080/00927872.2019.1579335 | MR 3975989 | Zbl 07089356
Partner of
EuDML logo