Article
Keywords:
elliptic curve; torsion subgroup; rank
Summary:
Let $C_{m} \colon y^{2} = x^{3} - m^{2}x +p^{2}q^{2}$ be a family of elliptic curves over $\mathbb {Q}$, where $m$ is a positive integer and $p$, $q$ are distinct odd primes. We study the torsion part and the rank of $C_m(\mathbb {Q})$. More specifically, we prove that the torsion subgroup of $C_{m}(\mathbb {Q})$ is trivial and the $\mathbb {Q}$-rank of this family is at least 2, whenever $m \not \equiv 0 \pmod 3$, $m \not \equiv 0 \pmod 4$ and $m \equiv 2 \pmod {64}$ with neither $p$ nor $q$ dividing $m$.
References:
[1] Antoniewicz, A.:
On a family of elliptic curves. Zesz. Nauk. Uniw. Jagiell. 1285, Univ. Iagell. Acta Math. 43 (2005), 21-32.
MR 2331469 |
Zbl 1116.11036
[3] Cremona, J. E.:
Algorithms for Modular Elliptic Curves. Cambridge University Press, New York (1997).
MR 1628193 |
Zbl 0872.14041
[8] Stein, W., Joyner, D., Kohel, D., Cremona, J., Burçin, E.:
SageMath software, version 4.5.3. Available at
https://www.sagemath.org/ (2010).
[10] Tadić, P.:
The rank of certain subfamilies of the elliptic curve $Y^2= X^3 - X + T^2$. Ann. Math. Inform. 40 (2012), 145-153.
MR 3005123 |
Zbl 1274.11109