Previous |  Up |  Next

Article

Keywords:
elliptic curve; torsion subgroup; rank
Summary:
Let $C_{m} \colon y^{2} = x^{3} - m^{2}x +p^{2}q^{2}$ be a family of elliptic curves over $\mathbb {Q}$, where $m$ is a positive integer and $p$, $q$ are distinct odd primes. We study the torsion part and the rank of $C_m(\mathbb {Q})$. More specifically, we prove that the torsion subgroup of $C_{m}(\mathbb {Q})$ is trivial and the $\mathbb {Q}$-rank of this family is at least 2, whenever $m \not \equiv 0 \pmod 3$, $m \not \equiv 0 \pmod 4$ and $m \equiv 2 \pmod {64}$ with neither $p$ nor $q$ dividing $m$.
References:
[1] Antoniewicz, A.: On a family of elliptic curves. Zesz. Nauk. Uniw. Jagiell. 1285, Univ. Iagell. Acta Math. 43 (2005), 21-32. MR 2331469 | Zbl 1116.11036
[2] Brown, E., Myers, B. T.: Elliptic curves from Mordell to Diophantus and back. Am. Math. Mon. 109 (2002), 639-649. DOI 10.2307/3072428 | MR 1917222 | Zbl 1083.11037
[3] Cremona, J. E.: Algorithms for Modular Elliptic Curves. Cambridge University Press, New York (1997). MR 1628193 | Zbl 0872.14041
[4] Husemöller, D.: Elliptic Curves. Graduate Texts in Mathematics 111. Springer, New York (2004). DOI 10.1007/b97292 | MR 2024529 | Zbl 1040.11043
[5] Juyal, A., Kumar, S. D.: On the family of elliptic curves $y^2= x^3-m^2 x+ p^2$. Proc. Indian Acad. Sci., Math. Sci. 128 (2018), Article ID 54, 11 pages. DOI 10.1007/s12044-018-0433-0 | MR 3869527 | Zbl 1448.11104
[6] Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math., Inst. Hautes Étud. Sci. 47 (1977), 33-186. DOI 10.1007/BF02684339 | MR 0488287 | Zbl 0394.14008
[7] Silverman, J. H., Tate, J. T.: Rational Points on Elliptic Curves. Undergraduate Texts in Mathematics. Springer, Cham (2015). DOI 10.1007/978-3-319-18588-0 | MR 3363545 | Zbl 1346.11001
[8] Stein, W., Joyner, D., Kohel, D., Cremona, J., Burçin, E.: SageMath software, version 4.5.3. Available at https://www.sagemath.org/ (2010).
[9] Tadić, P.: On the family of elliptic curve $Y^2 = X^3 -T^2 X+1$. Glas. Mat., III. Ser. 47 (2012), 81-93. DOI 10.3336/gm.47.1.06 | MR 2942776 | Zbl 1254.11057
[10] Tadić, P.: The rank of certain subfamilies of the elliptic curve $Y^2= X^3 - X + T^2$. Ann. Math. Inform. 40 (2012), 145-153. MR 3005123 | Zbl 1274.11109
Partner of
EuDML logo