[3] Brannan, D. A., Taha, T. S.:
On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 31 (1986), 70-77.
MR 0911858 |
Zbl 0614.30017
[4] Duren, P. L.:
Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983).
MR 0708494 |
Zbl 0514.30001
[5] Frasin, B. A.:
Coefficient inequalities for certain classes of Sakaguchi type functions. Int. J. Nonlinear Sci. 10 (2010), 206-211.
MR 2745244 |
Zbl 1216.30008
[9] Li, X.-F., Wang, A.-P.:
Two new subclasses of bi-univalent functions. Int. Math. Forum 7 (2012), 1495-1504.
MR 2967369 |
Zbl 1263.30006
[11] Mazi, E. P., Opoola, T. O.: On some subclasses of bi-univalent functions associating pseudo-starlike functions with Sakaguchi type functions. Gen. Math. 25 (2017), 85-95.
[12] Murugusundaramoorthy, G., Magesh, N., Prameela, V.:
Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013 (2013), Article ID 573017, 3 pages.
DOI 10.1155/2013/573017 |
MR 3064526 |
Zbl 1292.30005
[16] Srivastava, H. M., Altınkaya, Ş., Yalçın, S.:
Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol., Trans. A, Sci. 43 (2019), 1873-1879.
DOI 10.1007/s40995-018-0647-0 |
MR 3978601
[21] Srivastava, H. M., Wanas, A. K.:
Initial Maclaurin coefficient bounds for new subclasses of analytic and $m$-fold symmetric bi-univalent functions defined by a linear combination. Kyungpook Math. J. 59 (2019), 493-503.
DOI 10.1134/S0965542519030060 |
MR 4020441 |
Zbl 1435.30064
[22] Wanas, A. K., Alina, A. L.:
Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions. J. Phys., Conf. Ser. 1294 (2019), Article ID 032003, 6 pages.
DOI 10.1088/1742-6596/1294/3/032003
[23] Wanas, A. K., Majeed, A. H.:
Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points. Appl. Math. E-Notes 19 (2019), 14-21.
MR 3947083 |
Zbl 1427.30035
[24] Wanas, A. K., Yalçın, S.:
Initial coefficient estimates for a new subclasses of analytic and $m$-fold symmetric bi-univalent functions. Malaya J. Mat. 7 (2019), 472-476.
DOI 10.26637/MJM0703/0018 |
MR 3987769