Previous |  Up |  Next

Article

Keywords:
holomorphic function; bi-univalent function; coefficient estimates; $\lambda $-pseudo-starlike function; Sakaguchi-type function
Summary:
We introduce and study two certain classes of holomorphic and bi-univalent functions associating $\lambda $-pseudo-starlike functions with Sakaguchi-type functions. We determine upper bounds for the Taylor--Maclaurin coefficients $\vert a_{2}\vert $ and $\vert a_{3}\vert $ for functions belonging to these classes. Further we point out certain special cases for our results.
References:
[1] Adegani, E. A., Bulut, S., Zireh, A.: Coefficient estimates for a subclass of analytic bi-univalent functions. Bull. Korean Math. Soc. 55 (2018), 405-413. DOI 10.4134/BKMS.b170051 | MR 3789451 | Zbl 1393.30010
[2] Babalola, K. O.: On $\lambda $-pseudo-starlike functions. J. Class. Anal. 3 (2013), 137-147. DOI 10.7153/jca-03-12 | MR 3322264 | Zbl 1412.30026
[3] Brannan, D. A., Taha, T. S.: On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 31 (1986), 70-77. MR 0911858 | Zbl 0614.30017
[4] Duren, P. L.: Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). MR 0708494 | Zbl 0514.30001
[5] Frasin, B. A.: Coefficient inequalities for certain classes of Sakaguchi type functions. Int. J. Nonlinear Sci. 10 (2010), 206-211. MR 2745244 | Zbl 1216.30008
[6] Frasin, B. A.: Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 43 (2014), 383-389. DOI 10.15672/hjms.2015449084 | MR 3241315 | Zbl 1307.30023
[7] Frasin, B. A., Aouf, M. K.: New subclasses of bi-univalent functions. Appl. Math. Lett. 24 (2011), 1569-1573. DOI 10.1016/j.aml.2011.03.048 | MR 2803711 | Zbl 1218.30024
[8] Joshi, S., Joshi, S., Pawar, H.: On some subclasses of bi-univalent functions associated with pseudo-starlike functions. J. Egypt. Math. Soc. 24 (2016), 522-525. DOI 10.1016/j.joems.2016.03.007 | MR 3553869 | Zbl 1352.30009
[9] Li, X.-F., Wang, A.-P.: Two new subclasses of bi-univalent functions. Int. Math. Forum 7 (2012), 1495-1504. MR 2967369 | Zbl 1263.30006
[10] Magesh, N., Bulut, S.: Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions. Afr. Mat. 29 (2018), 203-209. DOI 10.1007/s13370-017-0535-3 | MR 3761423 | Zbl 1399.30052
[11] Mazi, E. P., Opoola, T. O.: On some subclasses of bi-univalent functions associating pseudo-starlike functions with Sakaguchi type functions. Gen. Math. 25 (2017), 85-95.
[12] Murugusundaramoorthy, G., Magesh, N., Prameela, V.: Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013 (2013), Article ID 573017, 3 pages. DOI 10.1155/2013/573017 | MR 3064526 | Zbl 1292.30005
[13] Owa, S., Sekine, T., Yamakawa, R.: On Sakaguchi type functions. Appl. Math. Comput. 187 (2007), 356-361. DOI 10.1016/j.amc.2006.08.133 | MR 2323589 | Zbl 1113.30018
[14] Sakaguchi, K.: On a certain univalent mapping. J. Math. Soc. Japan 11 (1959), 72-75. DOI 10.2969/jmsj/01110072 | MR 0107005 | Zbl 0085.29602
[15] Şeker, B.: On a new subclass of bi-univalent functions defined by using Salagean operator. Turk. J. Math. 42 (2018), 2891-2896. DOI 10.3906/mat-1507-100 | MR 3885420 | Zbl 1424.30073
[16] Srivastava, H. M., Altınkaya, Ş., Yalçın, S.: Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol., Trans. A, Sci. 43 (2019), 1873-1879. DOI 10.1007/s40995-018-0647-0 | MR 3978601
[17] Srivastava, H. M., Bansal, D.: Coefficient estimates for a subclass of analytic and bi-univalent functions. J. Egypt. Math. Soc. 23 (2015), 242-246. DOI 10.1016/j.joems.2014.04.002 | MR 3355409 | Zbl 1326.30019
[18] Srivastava, H. M., Eker, S. S., Ali, R. M.: Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 29 (2015), 1839-1845. DOI 10.2298/FIL1508839S | MR 3403901 | Zbl 06749151
[19] Srivastava, H. M., Gaboury, S., Ghanim, F.: Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Math. 28 (2017), 693-706. DOI 10.1007/s13370-016-0478-0 | MR 3687384 | Zbl 1370.30009
[20] Srivastava, H. M., Mishra, A. K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23 (2010), 1188-1192. DOI 10.1016/j.aml.2010.05.009 | MR 2665593 | Zbl 1201.30020
[21] Srivastava, H. M., Wanas, A. K.: Initial Maclaurin coefficient bounds for new subclasses of analytic and $m$-fold symmetric bi-univalent functions defined by a linear combination. Kyungpook Math. J. 59 (2019), 493-503. DOI 10.1134/S0965542519030060 | MR 4020441 | Zbl 1435.30064
[22] Wanas, A. K., Alina, A. L.: Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions. J. Phys., Conf. Ser. 1294 (2019), Article ID 032003, 6 pages. DOI 10.1088/1742-6596/1294/3/032003
[23] Wanas, A. K., Majeed, A. H.: Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points. Appl. Math. E-Notes 19 (2019), 14-21. MR 3947083 | Zbl 1427.30035
[24] Wanas, A. K., Yalçın, S.: Initial coefficient estimates for a new subclasses of analytic and $m$-fold symmetric bi-univalent functions. Malaya J. Mat. 7 (2019), 472-476. DOI 10.26637/MJM0703/0018 | MR 3987769
Partner of
EuDML logo