
Mathematica Bohemica

Abbas Kareem Wanas; Basem Aref Frasin
Initial Maclaurin coefficient estimates for λ-pseudo-starlike bi-univalent functions
associated with Sakaguchi-type functions

Mathematica Bohemica, Vol. 147 (2022), No. 2, 201–210

Persistent URL: http://dml.cz/dmlcz/150328

Terms of use:
© Institute of Mathematics AS CR, 2022

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150328
http://dml.cz


147 (2022) MATHEMATICA BOHEMICA No. 2, 201–210

INITIAL MACLAURIN COEFFICIENT ESTIMATES FOR

λ-PSEUDO-STARLIKE BI-UNIVALENT FUNCTIONS ASSOCIATED

WITH SAKAGUCHI-TYPE FUNCTIONS

Abbas Kareem Wanas, Al Diwaniyah, Basem Aref Frasin, Mafraq

Received March 22, 2020. Published online May 21, 2021.
Communicated by Grigore Sălăgean

Abstract. We introduce and study two certain classes of holomorphic and bi-univalent
functions associating λ-pseudo-starlike functions with Sakaguchi-type functions. We deter-
mine upper bounds for the Taylor–Maclaurin coefficients |a2| and |a3| for functions belong-
ing to these classes. Further we point out certain special cases for our results.
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1. Introduction

Denote by A the collection of all holomorphic functions in the unit disc U =

{z ∈ C : |z| < 1} that have the form

(1.1) f(z) = z +
∞
∑

k=2

akz
k.

Further, assume that S stands for the sub-collection of the set A consisting of

functions in U satisfying (1.1) which are univalent in U .

Frasin (see [5]) introduced and studied the class S(γ,m, n) consisting of functions

f ∈ A which satisfy the condition

Re
{ (m− n)zf ′(z)

f(mz)− f(nz)

}

> γ,
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for some 0 6 γ < 1, m,n ∈ C with m 6= n, |m| 6 1, |n| 6 1 and for all z ∈ U .

We note that the class S(γ, 1, n) was studied by Owa et al. (see [13]), while the

class S(γ, 1,−1) ≡ Ss(γ) was considered by Sakaguchi (see [14]) and is called the

Sakaguchi function of order γ. Also, S(0, 1,−1) ≡ Ss is the class of starlike functions

with respect to symmetrical points in U , and S(γ, 1, 0) ≡ S∗(γ) is the class of starlike

functions of order γ, 0 6 γ < 1.

In [2] Babalola defined the class Lλ(γ) of λ-pseudo-starlike functions of order γ

which are the functions f ∈ A such that

Re
{z(f ′(z))λ

f(z)

}

> γ,

where 0 6 γ < 1, λ > 1, and z ∈ U . In particular, Babalola (see [2]) showed that

all λ-pseudo-starlike functions are Bazilevič of type 1− 1/λ and order γ1/λ and are

univalent in U . It is observed that for λ = 1, we have the class of starlike functions.

According to the Koebe one-quarter theorem (see [4]) “every function f ∈ S has an

inverse f−1 which satisfies f−1(f(z)) = z, (z ∈ U) and f(f−1(w)) = w, |w| < r0(f),

r0(f) >
1

4
”, where

(1.2) g(w) = f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + . . .

For f ∈ A, if both f and f−1 are univalent in U , we say that f is a bi-univalent

function in U . We denote by Σ the class of bi-univalent functions in U given by (1.1).

In fact, Srivastava et al. (see [20]) have revived the study of holomorphic and bi-

univalent functions in recent years. Some examples of functions in the class Σ are

z

1− z
,

1

2
log

(1 + z

1− z

)

and − log(1 − z)

with the corresponding inverse functions

w

1 + w
,

e2w − 1

e2w + 1
and

ew − 1

ew
,

respectively. Conversely, examples of common functions that are not in Σ are

z −
z2

2
and

z

1− z2
.

Many researchers (see, for example, [1], [6], [7], [10], [15]–[19], [21]–[24]) have

recently introduced and investigated several interesting subclasses of the bi-univalent

function class Σ and they have found non-sharp estimates on the first two Taylor–

Maclaurin coefficients |a2| and |a3|.
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We require the following lemma that will be used to prove our main results.

Lemma 1.1 ([4]). If h ∈ P , then |ck| 6 2 for each k ∈ N, where P is the class of

all functions h holomorphic in U for which

Re(h(z)) > 0, z ∈ U,

where

h(z) = 1 + c1z + c2z
2 + . . . , z ∈ U.

2. Coefficient estimates for the function class VΣ(δ, λ,m, n;α)

Definition 2.1. A function f ∈ Σ given by (1.1) is said to be in the class

VΣ(δ, λ,m, n;α) if the following conditions are satisfied:

(2.1)
∣

∣

∣
arg

(

(1 − δ)
(m− n)z(f ′(z))λ

f(mz)− f(nz)
+ δ

(m− n)((zf ′(z))′)λ

(f(mz)− f(nz))′

)∣

∣

∣
<

απ

2

and

(2.2)
∣

∣

∣
arg

(

(1− δ)
(m− n)w(g′(w))λ

g(mw)− g(nw)
+ δ

(m− n)((wg′(w))′)λ

(g(mw)− g(nw))′

)∣

∣

∣
<

απ

2
,

where 0 < α 6 1, 0 6 δ 6 1, λ > 1, m,n ∈ C, m 6= n, |m| 6 1, |n| 6 1, z, w ∈ U and

g = f−1 is given by (1.2).

R em a r k 2.1. It should be remarked that the class VΣ(δ, λ,m, n;α) is a gener-

alization of well-known classes consider earlier. These classes are:

(1) For δ = 0, the class VΣ(δ, λ,m, n;α) = 6 λ
Σ
(m,n, α), which was introduced by

Mazi and Opoola, see [11];

(2) For δ = n = 0 and m = 1, the class VΣ(δ, λ,m, n;α) = LBλ
Σ
(α), which was

given by Joshi et al. in [8];

(3) For n = 0 and λ = m = 1, the class VΣ(δ, λ,m, n;α) = MΣ(α, δ), which was

investigated by Liu and Wang, see [9];

(4) For δ = n = 0 and λ = m = 1, the class VΣ(δ, λ,m, n;α) = S∗
Σ
(α), which was

studied by Brannan and Taha, see [3].

We begin by finding the estimates on the coefficients |a2| and |a3| for functions in

the class VΣ(δ, λ,m, n;α).
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Theorem 2.1. Let f ∈ VΣ(δ, λ,m, n;α) (0 < α 6 1, 0 6 δ 6 1, λ > 1, m,n ∈ C,

m 6= n, |m| 6 1, |n| 6 1) be given by (1.1). Then

|a2| 6
2α

√

|2α(Υ(δ, λ,m, n)−mn) + (1− α)(δ + 1)2(2λ−m− n)2|

and

|a3| 6
4α2

(δ + 1)2(2λ−m− n)2
+

2α

(2δ + 1)(3λ−m2 − n2 −mn)
,

where

(2.3) Υ(δ, λ,m, n) = δ((m2 + n2 + 4mn)− 6λ(m+ n− λ)) + λ(1 − 2(m+ n− λ)).

P r o o f. It follows from conditions (2.1) and (2.2) that

(2.4) (1− δ)
(m− n)z(f ′(z))λ

f(mz)− f(nz)
+ δ

(m− n)((zf ′(z))′)λ

(f(mz)− f(nz))′
= (p(z))α

and

(2.5) (1− δ)
(m− n)w(g′(w))λ

g(mw)− g(nw)
+ δ

(m− n)((wg′(w))′)λ

(g(mw) − g(nw))′
= (q(w))α,

where g = f−1 and p, q in P have the following series representations:

(2.6) p(z) = 1 + p1z + p2z
2 + p3z

3 + . . .

and

(2.7) q(w) = 1 + q1w + q2w
2 + q3w

3 + . . .

Comparing the corresponding coefficients of (2.4) and (2.5) yields

(δ + 1)(2λ−m− n)a2 = αp1,(2.8)

(2δ + 1)(3λ−m2 − n2 −mn)a3(2.9)

+ (3δ + 1)((m+ n)2 − 2λ(m+ n− λ+ 1))a2
2
= αp2 +

α(α− 1)

2
p2
1
,

− (δ + 1)(2λ−m− n)a2 = αq1(2.10)

and

(2.11) ((6λ−m2 − n2)− 2λ(m+ n− λ+ 1)− δ(6λ(m+ n− λ− 1) + (m− n)2))a22

−(2δ + 1)(3λ−m2 − n2 −mn)a3 = αq2 +
α(α− 1)

2
q21 .
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In view of (2.8) and (2.10), we conclude that

(2.12) p1 = −q1

and

(2.13) 2(δ + 1)2(2λ−m− n)2a2
2
= α2(p2

1
+ q2

1
).

Also, by using (2.9) and (2.11), together with (2.13), we find that

2(δ((m2 + n2 + 4mn)− 6λ(m+ n− λ)) + λ(1− 2(m+ n− λ))−mn)a2
2

= α(p2 + q2) +
α(α− 1)

2
(p21 + q21)

= α(p2 + q2) +
(α− 1)(δ + 1)2(2λ−m− n)2

α
a22.

Further computations show that

(2.14) a2
2
=

α2(p2 + q2)

2α(Υ(δ, λ,m, n)−mn) + (1− α)(δ + 1)2(2λ−m− n)2
,

where Υ(δ, λ,m, n) is given by (2.3).

By taking the absolute value of (2.14) and applying Lemma 1.1 for the coeffi-

cients p2 and q2, we have

|a2| 6
2α

√

|2α(Υ(δ, λ,m, n)−mn) + (1− α)(δ + 1)2(2λ−m− n)2|
.

To determine the bound on |a3|, by subtracting (2.11) from (2.9), we get

(2.15) 2(2δ + 1)(3λ−m2 − n2 −mn)(a3 − a2
2
) = α(p2 − q2) +

α(α− 1)

2
(p2

1
− q2

1
).

Now, substituting the value of a2
2
from (2.13) into (2.15) and using (2.12), we deduce

that

(2.16) a3 =
α2(p2

1
+ q2

1
)

2(δ + 1)2(2λ−m− n)2
+

α(p2 − q2)

2(2δ + 1)(3λ−m2 − n2 −mn)
.

Taking the absolute value of (2.16) and applying Lemma 1.1 once again for the

coefficients p1, p2, q1 and q2, it follows that

|a3| 6
4α2

(δ + 1)2(2λ−m− n)2
+

2α

(2δ + 1)(3λ−m2 − n2 −mn)
.

�
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R em a r k 2.2. In Theorem 2.1, if we choose

(1) δ = 0, then we have the results which were given by Mazi and Opoola in [11],

Theorem 1;

(2) δ = n = 0 and m = 1, then we have the results obtained by Joshi et al. in [8],

Theorem 1;

(3) n = 0 and λ = m = 1, then we obtain the results obtained by Liu and Wang

in [9], Theorem 2.2;

(4) δ = n = 0 and λ = m = 1, then we get the results obtained by Murugusun-

daramoorthy et al. in [12], Corollary 6.

3. Coefficient estimates for the function class V ∗
Σ
(δ, λ,m, n;β)

Definition 3.1. A function f ∈ Σ given by (1.1) is said to be in the class

V ∗
Σ
(δ, λ,m, n;β) if the following conditions are satisfied:

(3.1) Re
{

(1− δ)
(m− n)z(f ′(z))λ

f(mz)− f(nz)
+ δ

(m− n)((zf ′(z))′)λ

(f(mz)− f(nz))′

}

> β

and

(3.2) Re
{

(1 − δ)
(m− n)w(g′(w))λ

g(mw) − g(nw)
+ δ

(m− n)((wg′(w))′)λ

(g(mw)− g(nw))′

}

> β,

where 0 6 β < 1, 0 6 δ 6 1, λ > 1, m 6= n, |m| 6 1, |n| 6 1, z, w ∈ U and g = f−1

is given by (1.2).

R em a r k 3.1. It should be remarked that the class V ∗
Σ
(δ, λ,m, n;β) is a gener-

alization of well-known classes consider earlier. These classes are:

(1) For δ = 0, the class V ∗
Σ
(δ, λ,m, n;β) = 6 λ

Σ
(m,n, β), which was introduced by

Mazi and Opoola, see [11];

(2) For δ = n = 0 and m = 1, the class V ∗
Σ
(δ, λ,m, n;β) = LBΣ(λ, β), which was

given by Joshi et al. in [8];

(3) For n = 0 and λ = m = 1, the class V ∗
Σ
(δ, λ,m, n;β) = BΣ(β, δ), which was

investigated by Liu and Wang, see [9];

(4) For δ = n = 0 and λ = m = 1, the class V ∗
Σ
(δ, λ,m, n;β) = S∗

Σ
(β), which was

studied by Brannan and Taha, see [3].

In this section, we find the estimates on the coefficients |a2| and |a3| for functions

in the class V ∗
Σ
(δ, λ,m, n;β).
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Theorem 3.1. Let f ∈ V ∗
Σ
(δ, λ,m, n;β) (0 6 β < 1, 0 6 δ 6 1, λ > 1, m,n ∈ C,

m 6= n, |m| 6 1, |n| 6 1) be given by (1.1). Then

|a2| 6

√

2(1− β)
√

|δ((m2 + n2 + 4mn)− 6λ(m+ n− λ)) + λ(1 − 2(m+ n− λ)) −mn|

and

|a3| 6
4(1− β)2

(δ + 1)2(2λ−m− n)2
+

2(1− β)

(2δ + 1)(3λ−m2 − n2 −mn)
.

P r o o f. In the light of the conditions (3.1) and (3.2), there are p, q ∈ P such

that

(3.3) (1− δ)
(m− n)z(f ′(z))λ

f(mz)− f(nz)
+ δ

(m− n)((zf ′(z))′)λ

(f(mz)− f(nz))′
= β + (1− β)p(z)

and

(3.4) (1 − δ)
(m− n)w(g′(w))λ

g(mw) − g(nw)
+ δ

(m− n)((wg′(w))′)λ

(g(mw)− g(nw))′
= β + (1− β)q(w),

where p(z) and q(w) have the forms (2.6) and (2.7), respectively. Comparing the

corresponding coefficients in (3.3) and (3.4) yields

(δ + 1)(2λ−m− n)a2 = (1− β)p1,(3.5)

(2δ + 1)(3λ−m2 − n2 −mn)a3(3.6)

+ (3δ + 1)((m+ n)2 − 2λ(m+ n− λ+ 1))a2
2
= (1− β)p2,

− (δ + 1)(2λ−m− n)a2 = (1− β)q1(3.7)

and

(3.8) ((6λ−m2 − n2)− 2λ(m+ n− λ+ 1)− δ(6λ(m+ n− λ− 1) + (m− n)2))a22

− (2δ + 1)(3λ−m2 − n2 −mn)a3 = (1− β)q2.

From (3.5) and (3.7), we get

(3.9) p1 = −q1

and

(3.10) 2(δ + 1)2(2λ−m− n)2a2
2
= (1− β)2(p2

1
+ q2

1
).
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Adding (3.6) and (3.8), we obtain

(3.11) 2(δ((m2 + n2 + 4mn)− 6λ(m+ n− λ))

+ λ(1 − 2(m+ n− λ))−mn)a2
2
= (1− β)(p2 + q2).

Hence, we find that

a22 =
(1 − β)(p2 + q2)

2(δ((m2 + n2 + 4mn)− 6λ(m+ n− λ)) + λ(1− 2(m+ n− λ))−mn)
.

By applying Lemma 1.1 for the coefficients p2 and q2, we deduce that

|a2| 6

√

2(1− β)
√

|δ((m2 + n2 + 4mn)− 6λ(m+ n− λ)) + λ(1 − 2(m+ n− λ))−mn|
.

To determine the bound on |a3|, by subtracting (3.8) from (3.6), we get

2(2δ + 1)(3λ−m2 − n2 −mn)(a3 − a2
2
) = (1− β)(p2 − q2),

or equivalently

(3.12) a3 = a2
2
+

(1− β)(p2 − q2)

2(2δ + 1)(3λ−m2 − n2 −mn)
.

Substituting the value of a2
2
from (3.10) into (3.12), it follows that

a3 =
(1− β)2(p2

1
+ q2

1
)

2(δ + 1)2(2λ−m− n)2
+

(1− β)(p2 − q2)

2(2δ + 1)(3λ−m2 − n2 −mn)
.

By applying Lemma 1.1 once again for the coefficients p1, p2, q1 and q2, we deduce

that

|a3| 6
4(1− β)2

(δ + 1)2(2λ−m− n)2
+

2(1− β)

(2δ + 1)(3λ−m2 − n2 −mn)
.

�

R em a r k 3.2. In Theorem 3.1, if we choose

(1) δ = 0, then we have the results which were given by Mazi and Opoola, see [11],

Theorem 2;

(2) δ = n = 0 and m = 1, then we have the results obtained by Joshi et al. [8],

Theorem 2;

(3) n = 0 and λ = m = 1, then we obtain the results obtained by Liu and Wang,

see [9], Theorem 3.2;

(4) δ = n = 0 and λ = m = 1, then we get the results obtained by Murugusun-

daramoorthy et al. in [12], Corollary 7.
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