Previous |  Up |  Next

Article

Keywords:
semi-Hilbertian space; $A$-normal operator; $(n,m)$-normal operator; $(n,m)$-quasinormal operator
Summary:
The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let ${\mathcal H}$ be a Hilbert space and let $A$ be a positive bounded operator on ${\mathcal H}$. The semi-inner product $\langle h\mid k\rangle _A:=\langle Ah\mid k\rangle $, $h,k \in {\mathcal H}$, induces a semi-norm $\|{\cdot }\|_A$. This makes ${\mathcal H}$ into a semi-Hilbertian space. An operator $T\in {\mathcal B}_A({\mathcal H})$ is said to be $(n,m)$-$A$-normal if $[T^n,(T^{\sharp _A})^m]:=T^n(T^{\sharp _A})^m-(T^{\sharp _A})^mT^n=0$ for some positive integers $n$ and $m$.
References:
[1] Abood, E. H., Al-loz, M. A.: On some generalization of normal operators on Hilbert space. Iraqi J. Sci. 56 (2015), 1786-1794.
[2] Abood, E. H., Al-loz, M. A.: On some generalizations of $(n,m)$-normal powers operators on Hilbert space. J. Progressive Res. Math. (JPRM) 7 (2016), 1063-1070.
[3] Alzuraiqi, S. A., Patel, A. B.: On $n$-normal operators. Gen. Math. Notes 1 (2010), 61-73. Zbl 1225.47023
[4] Arias, M. L., Corach, G., Gonzalez, M. C.: Metric properties of projections in semi-Hilbertian spaces. Integral Equations Oper. Theory 62 (2008), 11-28. DOI 10.1007/s00020-008-1613-6 | MR 2442900 | Zbl 1181.46018
[5] Arias, M. L., Corach, G., Gonzalez, M. C.: Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 428 (2008), 1460-1475. DOI 10.1016/j.laa.2007.09.031 | MR 2388631 | Zbl 1140.46009
[6] Arias, M. L., Corach, G., Gonzalez, M. C.: Lifting properties in operator ranges. Acta Sci. Math. 75 (2009), 635-653. MR 2590353 | Zbl 1212.46048
[7] Baklouti, H., Feki, K., Ahmed, O. A. M. Sid: Joint normality of operators in semi-Hilbertian spaces. Linear Multilinear Algebra 68 (2020), 845-866. DOI 10.1080/03081087.2019.1593925 | MR 4072783 | Zbl 07178188
[8] Bavithra, V.: $(n,m)$-power quasi normal operators in semi-Hilbertian spaces. J. Math. Informatics 11 (2017), 125-129. DOI 10.22457/jmi.v11a16
[9] Benali, A., Ahmed, O. A. M. Sid: $(\alpha,\beta)$-$A$-normal operators in semi-Hilbertian spaces. Afr. Mat. 30 (2019), 903-920. DOI 10.1007/s13370-019-00690-3 | MR 3993640 | Zbl 07101153
[10] Chellali, C., Benali, A.: Class of $(A,n)$-power-hyponormal operators in semi-Hilbertian space. Func. Anal. Approx. Comput. 11 (2019), 13-21. MR 4069434 | Zbl 07158992
[11] Chō, M., Lee, J. E., Tanahashic, K., Uchiyamad, A.: Remarks on $n$-normal operators. Filomat 32 (2018), 5441-5451. DOI 10.2298/FIL1815441C | MR 3898586
[12] Chō, M., Načevska, B.: Spectral properties of $n$-normal operators. Filomat 32 (2018), 5063-5069. DOI 10.2298/FIL1814063C | MR 3898553
[13] Douglas, R. G.: On majorization, factorization, and range inclusion of operators in Hilbert space. Proc. Am. Math. Soc. 17 (1966), 413-415. DOI 10.1090/S0002-9939-1966-0203464-1 | MR 0203464 | Zbl 0146.12503
[14] Jah, S. H.: Class of $(A,n)$-power quasi-normal operators in semi-Hilbertian spaces. Int. J. Pure Appl. Math. 93 (2014), 61-83. DOI 10.12732/ijpam.v93i1.6 | Zbl 1331.47034
[15] Jibril, A. A. S.: On $n$-power normal operators. Arab. J. Sci. Eng., Sect. A, Sci. 33 (2008), 247-251. MR 2467186 | Zbl 1182.47025
[16] Mary, J. S. I., Vijaylakshmi, P.: Fuglede-Putnam theorem and quasi-nilpotent part of $n$-normal operators. Tamkang J. Math. 46 (2015), (151-165). DOI 10.5556/j.tkjm.46.2015.1665 | MR 3352354 | Zbl 1323.47023
[17] Saddi, A.: $A$-normal operators in semi-Hilbertian spaces. Aust. J. Math. Anal. Appl. 9 (2012), Article ID 5, 12 pages. MR 2878497 | Zbl 1259.47022
[18] Ahmed, O. A. M. Sid, Benali, A.: Hyponormal and $k$-quasi-hyponormal operators on semi-Hilbertian spaces. Aust. J. Math. Anal. Appl. 13 (2016), Article ID 7, 22 pages. MR 3513410 | Zbl 1348.47022
[19] Ahmed, O. A. M. Sid, Ahmed, O. B. Sid: On the classes $(n,m)$-power $D$-normal and $(n,m)$-power $D$-quasi-normal operators. Oper. Matrices 13 (2019), 705-732. DOI 10.7153/oam-2019-13-51 | MR 4008507 | Zbl 07142373
[20] Ahmed, O. B. Sid, Ahmed, O. A. M. Sid: On the class of $n$-power $D$-$m$-quasi-normal operatos on Hilbert spaces. Oper. Matrices 14 (2020), 159-174. DOI 10.7153/oam-2020-14-13 | MR 4080931 | Zbl 07347976
[21] Suciu, L.: Orthogonal decompositions induced by generalized contractions. Acta Sci. Math. 70 (2004), 751-765. MR 2107539 | Zbl 1087.47010
Partner of
EuDML logo