[1] Barbarossa, S., Sardellitti, S., Lorenzo, P. D.:
Communicating while computing: Distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Process. Mag. 31 (2014), 45-55.
DOI
[2] Cao, X., Liu, K. J. R.:
Distributed Newton's method for network cost minimization. IEEE Trans. Automat. Control 66 (2021), 1278-1285.
DOI |
MR 4226775
[3] Cheng, S., Liang, S.:
Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate. Kybernetika 56 (2020), 559-577.
DOI |
MR 4131743
[4] Chen, J., Sayed, A.:
Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Trans. Signal Process. 60 (2012), 4289-4305.
DOI |
MR 2960496
[5] Deng, Z., Liang, S.:
Distributed algorithms for aggregative games of multiple heterogeneous Euler-Lagrange systems. Automatica 99 (2019), 246-252.
DOI |
MR 3876174
[6] Persis, C. De, Grammatico, S.:
Continuous-time integral dynamics for a class of aggregative games with coupling constraints. IEEE Trans. Automat. Control 65 (2020), 2171-2176.
DOI |
MR 4091832
[8] Jakovetic, D., Moura, J. M. F., Xavier, J.:
Linear convergence rate of a class of distributed augmented Lagrangian algorithms. IEEE Trans. Automat. Control 60 (2015), 922-936.
DOI |
MR 3340785
[9] Kajiyama, Y., Hayashi, N., Takai, S.:
Linear convergence of consensus-based quantized optimization for smooth and strongly convex cost functions. IEEE Trans. Automat. Control 66 (2020), 1254-1261.
DOI |
MR 4226772
[10] Lan, G., Lee, S., Zhou, Y.:
Communication-efficient algorithms for decentralized and stochastic optimization. Math. Program. 180 (2020), 237-284.
DOI |
MR 4062837
[11] Li, P., Hu, J.:
A solution strategy for distributed uncertain economic dispatch problems via scenario theory. Control Theory Technol. 19 (2021), 499-506.
DOI |
MR 4356235
[12] Li, P., Hu, J., Qiu, L., Zhao, Y., Ghosh, B.:
A distributed economic dispatch strategy for power-water networks. IEEE Trans. Control Netw. Syst., Early Access (2021).
DOI
[13] Li, X., Xie, L., Hong, Y.:
Distributed continuous-time algorithm for a general nonsmooth monotropic optimization problem. Int. J. Robust Nonlinear Control 29 (2019), 3252-3266.
DOI |
MR 3973593
[14] Li, X., Xie, L., Hong, Y.:
Distributed aggregative optimization over multi-agent networks. IEEE Trans. Automat. Control. Early Access (2021).
DOI
[15] Ma, J., Yu, X., Liu, L., Feng, G.:
Global cooperative output regulation of linear multi-agent systems with limited bandwidth. IEEE Trans. Control Netw. Syst., Early Access (2021).
DOI
[16] Magnussson, S., Shokri-Ghadikolaei, H., Li, N.:
On maintaining linear convergence of distributed learning and optimization under limited communication. IEEE Trans. Signal Process. 68 (2020), 6101-6116.
DOI |
MR 4177712
[17] Msechu, E. J., Giannakis, G. B.:
Sensor-centric data reduction for estimation with WSNs via censoring and quantization. IEEE Trans. Signal Process. 60 (2011), 400-414.
DOI |
MR 2932127
[18] Nedic, A.:
Distributed gradient methods for convex machine learning problems in networks: Distributed optimization. IEEE Signal Process. Mag. 73 (2020), 92-101.
DOI 10.1109/MSP.2020.2975210
[19] Nedic, A., Ozdaglar, A.:
Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54 (2009), 48-61.
DOI |
MR 2478070
[20] Pu, Y., Zeilinger, M. N., Jones, C. N.:
Quantization design for distributed optimization. IEEE Trans. Automat. Control 62 (2016), 2107-2120.
DOI |
MR 3641434
[21] Ren, W., Beard, R. W.: Distributed consensus in multi-vehicle cooperative control. Springer, London 2008.
[22] Shi, W., Ling, Q., Wu, G., Yin, W.:
EXTRA: An exact first-order algorithm for decentralized consensus optimization. SIAM J. Optim. 25 (2015), 944-966.
DOI |
MR 3343366
[23] Tardos, E., Vazirani, V. V.:
Basic solution concepts and computational issues. Algorithmic Game Theory (2007), 3-28.
DOI |
MR 2391748
[24] Wang, X., Deng, Z., Ma, S., Xian, D.:
Event-triggered design for multi-agent optimal consensus of Euler-Lagrangian systems. Kybernetika 53 (2017), 179-194.
DOI |
MR 3638563
[25] Wang, Y., Lin, P., Qin, H.:
Distributed classification learning based on nonlinear vector support machines for switching networks. Kybernetika 53 (2017), 595-611.
DOI |
MR 3730254
[26] Xu, J., Zhu, S., Soh, Y. C., Xie, L.:
A Bregman splitting scheme for distributed optimization over networks. IEEE Trans. Automat. Control 63 (2018), 3809-3824.
DOI |
MR 3875379
[27] Yi, P., Hong, Y.:
Quantized subgradient algorithm and data-rate analysis for distributed optimization. IEEE Trans. Control Netw. Syst. 1 (2014), 380-392.
DOI |
MR 3303147
[28] Yi, P., Hong, Y., Liu, F.:
Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems. Automatica 74 (2016), 259-269.
DOI |
MR 3569392
[29] Yuan, D., Hong, Y., Ho, D., Jiang, G.:
Optimal distributed stochastic mirror descent for strongly convex optimization. Automatica 90 (2018), 196-203.
DOI |
MR 3764399
[30] Zhang, X., Liu, J., Zhu, Z., Bentley, E. S.:
Compressed distributed gradient descent: Communication-efficient consensus over networks. In: Proc. IEEE Conf. Comput. Commun. 2019, 2431-2439.
DOI
[31] Zhu, S., Hong, M., Chen, B.:
Quantized consensus ADMM for multi-agent distributed optimization. In: Proc. IEEE Int. Conf. Acoust., Speech Signal Process 2016, pp. 4134-4138.
DOI