[1] Alanís-Durán, A., Cavazos-Cadena, R.:
An optimality system for finite average Markov decision chains under risk-aversion. Kybernetika 48 (2012), 83-104.
MR 2932929
[2] Altman, E., Shwartz, A.:
Constrained Markov games: Nash equilibria. In: Annals of Dynamic Games (V. Gaitsgory, J. Filar, and K. Mizukami, eds.), Birkhauser, Boston 2000, pp. 213-221.
MR 1764491
[3] Atar, R., Budhiraja, A.:
A stochastic differential game for the inhomogeneous Laplace equation. Ann. Probab. 38 (2010), 2, 498-531.
DOI |
MR 2642884
[4] Balaji, S., Meyn, S. P.:
Multiplicative ergodicity and large deviations for an irreducible Markov chain. Stoch. Proc. Appl. 90 (2000), 1, 123-144.
DOI |
MR 1787128
[5] Bäuerle, N., Rieder, U.:
Markov Decision Processes with Applications to Finance. Springer, New York 2011.
MR 2808878 |
Zbl 1236.90004
[6] Bäuerle, N., Rieder, U.:
More risk-sensitive Markov decision processes. Math. Oper. Res. 39 (2014), 1, 105-120.
DOI |
MR 3173005
[7] Bäuerle, N., Rieder, U.:
Zero-sum risk-sensitive stochastic games. Stoch. Proc. Appl. 127 (2017), 2, 622-642.
DOI |
MR 3583765
[8] Bielecki, T. R., Hernández-Hernández, D., Pliska, S. R.:
Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management. Mathematical Methods of OR 50 (1999), 167-188.
DOI |
MR 1732397 |
Zbl 0959.91029
[9] Borkar, V. S., Meyn, S. F.:
Risk-sensitive optimal control for Markov decision process with monotone cost. Math. Oper. Res. 27 (2002), 1, 192-209.
DOI |
MR 1886226
[10] Cavazos-Cadena, R., Hernández-Hernández, D.:
A system of Poisson equations for a non-constant {Varadhan} functional on a finite state space. Appl. Math. Optim. 53 (2006), 101-119.
DOI |
MR 2190228
[11] Cavazos-Cadena, R., Hernández-Hernández, D.:
Nash equilibria in a class of Markov stopping games. Kybernetika 48 (2012), 5, 1027-1044.
MR 3086867
[12] Cavazos-Cadena, R., Rodríguez-Gutiérrez, L., Sánchez-Guillermo, D. M.:
Markov stopping games with an absorbing state and total reward criterion. Kybernetika 57 (2021), 474-492.
DOI |
MR 4299459
[13] Denardo, E. V., Rothblum, U. G.:
A turnpike theorem for a risk-sensitive Markov decision process with stopping. SIAM J. Control Optim. 45 (2006), 2, 414-431.
DOI |
MR 2246083
[14] Masi, G. B. Di, Stettner, L.:
Risk-sensitive control of discrete time Markov processes with infinite horizon. SIAM J. Control Optim. 38 (1999), 1, 61-78.
DOI |
MR 1740607
[15] Masi, G. B. Di, Stettner, L.:
Infinite horizon risk sensitive control of discrete time Markov processes with small risk. Syst. Control Lett. 40 (2000), 15-20.
DOI |
MR 1829070 |
Zbl 0977.93083
[16] Masi, G. B. Di, Stettner, L.:
Infinite horizon risk sensitive control of discrete time Markov processes under minorization property. SIAM J. Control Optim. 46 (2007), 1, 231-252.
DOI |
MR 2299627
[17] A.Filar, J., Vrieze, O. J.:
Competitive Markov Decision Processes. Springer, New York 1996.
MR 1418636
[19] Howard, R. A., Matheson, J. E.:
Risk-sensitive Markov decision processes. Manage. Sci. 18 (1972), 7, 349-463.
DOI |
MR 0292497
[20] Jaśkiewicz, A.:
Average optimality for risk sensitive control with general state space. Ann. Appl. Probab. 17 (2007), 2, 654-675.
DOI |
MR 2308338
[21] Kolokoltsov, V. N., Malafeyev, O. A.:
Understanding Game Theory. World Scientific, Singapore 2010.
MR 2666863 |
Zbl 1189.91001
[22] Kontoyiannis, I., Meyn, S. P.:
Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab. 13 (2003), 1, 304-362.
DOI |
MR 1952001
[23] Martínez-Cortés, V. M.:
Bi-personal stochastic transient Markov games with stopping times and total reward criterion. Kybernetika 57 (2021), 1, 1-14.
DOI |
MR 4231853
[25] Peskir, G., Shiryaev, A.:
Optimal Stopping and Free-Boundary Problems. Birkhauser, Boston 2006.
MR 2256030 |
Zbl 1115.60001
[26] Pitera, M., Stettner, L.:
Long run risk sensitive portfolio with general factors. Math. Meth. Oper. Res. 82 (2016), 2, 265-293.
DOI |
MR 3489700
[27] Puterman, M. L.:
Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York 1994.
MR 1270015 |
Zbl 1184.90170
[28] Shapley, L. S.:
Stochastic games. Proc. National Academy Sci. 39 (1953), 10, 1095-1100.
MR 0061807 |
Zbl 1180.91042
[30] Sladký, K.:
Growth rates and average optimality in risk-sensitive Markov decision chains. Kybernetika 44 (2008), 2, 205-226.
MR 2428220
[31] Sladký, K.:
Risk-sensitive average optimality in Markov decision processes. Kybernetika 54 (2018), 6, 1218-1230.
DOI |
MR 3902630
[32] Stettner, L.:
Risk sensitive portfolio optimization. Math. Meth. Oper. Res. 50 (1999), 3, 463-474.
DOI |
MR 1731299
[33] Zachrisson, L. E.:
Markov Games. Princeton University Press 12, Princeton 1964.
MR 0170729