Previous |  Up |  Next

Article

Keywords:
compact operator; integral equation; controlled convergence; Henstock-Kurzweil integral
Summary:
The space $\mathcal {HK}$ of Henstock-Kurzweil integrable functions on $[a,b]$ is the uncountable union of Fréchet spaces $\mathcal {HK}(X)$. In this paper, on each Fréchet space $\mathcal {HK}(X)$, an $F$-norm is defined for a continuous linear operator. Hence, many important results in functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the closed graph theorem, hold for the $\mathcal {HK}(X)$ space. It is known that every control-convergent sequence in the $\mathcal {HK}$ space always belongs to a $\mathcal {HK}(X)$ space for some $X$. We illustrate how to apply results for Fréchet spaces $\mathcal {HK}(X)$ to control-convergent sequences in the $\mathcal {HK}$ space. Examples of compact linear operators are given. Existence of solutions to linear and Hammerstein integral equations is proved.
References:
[1] Alewine, J. A., Schechter, E.: Topologizing the Denjoy space by measuring equiintegrability. Real Anal. Exch. 31 (2005/06), 23-44. DOI 10.14321/realanalexch.31.1.0023 | MR 2218186 | Zbl 1129.26003
[2] Apostol, T. M.: Mathematical Analysis: A Modern Approach to Advanced Calculus. Addison-Wesley Mathematics Series. Addison Wesley, Reading (1957). MR 0087718 | Zbl 0077.05501
[3] Bongiorno, B., Panchapagesan, T. V.: On the Alexiewicz topology of the Denjoy space. Real Anal. Exch. 21 (1995/96), 604-614. DOI 10.2307/44152670 | MR 1407272 | Zbl 0879.26028
[4] Chew, T. S.: The superposition operators in the space of Henstock-Kurzweil integrable functions. New Integrals Lecture Notes in Mathematics 1419. Springer, Berlin (1990), 19-24. DOI 10.1007/BFb0083096 | MR 1051917 | Zbl 0731.26006
[5] Chew, T. S., Lee, P. Y.: The topology of the space of Denjoy integrable functions. Bull. Aust. Math. Soc. 42 (1990), 517-524. DOI 10.1017/S0004972700028689 | MR 1083288 | Zbl 0715.26004
[6] Federson, M., Bianconi, R.: Linear Fredholm integral equations and the integral of Kurzweil. J. Appl. Anal. 8 (2002), 83-110. DOI 10.1515/JAA.2002.83 | MR 1921473 | Zbl 1043.45010
[7] Hönig, C. S.: Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints. North-Holland Mathematics Studies 16. North Holland, Amsterdam (1975). DOI 10.1016/s0304-0208(08)x7017-3 | MR 0499969 | Zbl 0307.45002
[8] Hönig, C. S.: There is no natural Banach space norm on the space of Kurzweil-Henstock- Denjoy-Perron integrable functions. Seminário Brasileiro de Análise 30 (1989), 387-397. MR 1763305
[9] Köthe, G.: Topological Vector Spaces I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 159. Springer, Berlin (1969). DOI 10.1007/978-3-642-64988-2 | MR 0248498 | Zbl 0179.17001
[10] Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E.: Integral Operators in Spaces of Summable Functions. Monographs and Textbooks on Mechanics of Solids and Fluids. Noordhoff International Publishing, Leyden (1976). MR 0385645 | Zbl 0312.47041
[11] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces. Series in Real Analysis 7. World Scientific, Singapore (2000). DOI 10.1142/4333 | MR 1763305 | Zbl 0954.28001
[12] Lee, P. Y.: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific, London (1989). DOI 10.1142/0845 | MR 1050957 | Zbl 0699.26004
[13] Lee, P. Y.: Topology of the Denjoy space. Southeast Asian Bull. Math. 38 (2014), 655-659. MR 3288602 | Zbl 1324.26009
[14] Méndez, L. Á. G., Reyna, J. A. E., Cárdenas, M. G. R., García, J. F. E.: The closed graph theorem and the space of Henstock-Kurzweil integrable functions with the Alexiewicz norm. Abstr. Appl. Anal. 2013 (2013), Article ID 476287, 4 pages. DOI 10.1155/2013/476287 | MR 3034983 | Zbl 1267.54018
[15] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). DOI 10.1142/9432 | MR 3839599 | Zbl 1437.28001
[16] Morris, S. A., Noussair, E. S.: The Schauder-Tychonoff fixed point theorem and applications. Mat. Čas., Slovensk. Akad. Vied 25 (1975), 165-172. MR 0397486 | Zbl 0304.47049
[17] Paúl, P. J.: The space of Denjoy-Dunford integrable functions is ultrabornological. Bull. Belg. Math. Soc. - Simon Stevin 8 (2001), 75-82. DOI 10.36045/bbms/1102714029 | MR 1817532 | Zbl 0997.46001
[18] Royden, H. L.: Real Analysis. Macmillan, New York (1989). MR 1013117 | Zbl 0704.26006
[19] Sari, D. K., Lee, P. Y., Zhao, D.: A new topology on the space of primitives of Henstock-Kurzweil integrable functions. Southeast Asian Bull. Math. 42 (2018), 719-728. MR 3888440 | Zbl 1428.26016
[20] Schaefer, H. H.: Topological Vector Space. Graduate Texts in Mathematics 3. Springer, New York (1971). DOI 10.1007/978-1-4684-9928-5 | MR 0342978 | Zbl 0217.16002
[21] Schwabik, Š.: On an integral operator in the space of functions with bounded variation. Čas. Pěst. Mat. 97 (1972), 297-330. DOI 10.21136/CPM.1972.108677 | MR 0450906 | Zbl 0255.47057
[22] Thomson, B. S.: The space of Denjoy-Perron integrable functions. Real Anal. Exch. 25 (1999/2000), 711-726. DOI 10.2307/44154028 | MR 1778525 | Zbl 1016.26010
[23] Tvrdý, M.: Linear integral equations in the space of regulated functions. Math. Bohem. 123 (1998), 177-212. DOI 10.21136/MB.1998.126306 | MR 1673977 | Zbl 0941.45001
Partner of
EuDML logo