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Abstract. The space HK of Henstock-Kurzweil integrable functions on [a, b] is the un-
countable union of Fréchet spaces HK(X). In this paper, on each Fréchet space HK(X),
an F -norm is defined for a continuous linear operator. Hence, many important results in
functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the
closed graph theorem, hold for the HK(X) space. It is known that every control-convergent
sequence in the HK space always belongs to a HK(X) space for some X. We illustrate
how to apply results for Fréchet spaces HK(X) to control-convergent sequences in the HK

space. Examples of compact linear operators are given. Existence of solutions to linear and
Hammerstein integral equations is proved.

Keywords: compact operator; integral equation; controlled convergence; Henstock-
Kurzweil integral

MSC 2020 : 26A39, 26A42

1. Preliminaries

Let HK be the space of all Henstock-Kurzweil integrable functions defined on

a compact interval [a, b] of the real line. It is well-known that the HK space can

be normed by the Alexiewicz norm ‖f‖ = sup
x∈[a,b]

|
∫ x

a
f(t) dt|. Unfortunately, it is

not complete under this norm. Moreover, there is no natural Banach norm on the

spaceHK; for examples, see [8], [22]. In this paper we will overcome this shortcoming

by considering subspaces HK(X), which are defined as follows:

Let X = {Xi} be a sequence of closed subsets of [a, b] such that Xi ⊂ Xi+1

and a, b ∈ Xi for each i ∈ N, while [a, b] =
⋃

i∈N

Xi. A function F is AC
⋆(Xi) if
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for each ε > 0 there is η > 0 such that for every partial partition P = {[uj, vj ] :

j = 1, 2, . . . ,m} of [a, b] with uj or vj ∈ Xi for each j, which satisfy
m
∑

j=1

|vj −uj| < η,

we have
m
∑

j=1

ω(F ; [uj , vj ]) < ε, where

ω(F ; [uj , vj ]) = sup{|F (y)− F (x)| : x, y ∈ [uj , vj ]},

see [12], pages 27 and 32. Let X be the family of all X such that Xi ⊂ Xi+1

and a, b ∈ Xi, for each i ∈ N, while [a, b] =
⋃

i∈N

Xi. For each X ∈ X, let HK(X)

be the space of all Henstock-Kurzweil integrable functions defined on [a, b] such

that its primitive function is AC⋆(Xi) for each i. Clearly, HK =
⋃

X∈X

HK(X).

Suppose f ∈ HK(X) and g ∈ HK(Y ). Then f ∈ HK(X) ⊆ HK(X ∩ Y ) and

g ∈ HK(Y ) ⊆ HK(X ∩ Y ), where X ∩ Y = {Xi ∩ Yj}i,j. Thus, f, g ∈ HK(X ∩ Y ).

For brevity, a partial division P = {[uj, vj ] : j = 1, 2, . . . ,m} and
m
∑

j=1

|F (vj)−F (uj)|

in this paper are often written as P = {[u, v]} and
∑

P

|F (v)− F (u)|, respectively.

Let a sequence X = {Xi} ∈ X be fixed. If f ∈ HK(X) and F is its primitive,

then F is AC⋆(Xi) for each Xi ∈ X and

‖f‖Xi = sup
P

∑

P

|F (v)− F (u)| = sup
P

∑

P

∣

∣

∣

∣

∫ v

u

f(t) dt

∣

∣

∣

∣

<∞,

where the supremum is taken over all partial partitions P = {[u, v]} of [a, b] with

u ∈ Xi or v ∈ Xi for each subinterval [u, v] ∈ P , see [5], [22]. Thus, the sequence of

semi-norms {‖f‖Xi } with f ∈ HK(X) is increasing since Xi ⊂ Xi+1 for all i. Define

‖f‖X =

∞
∑

i=1

1

2i
‖f‖Xi

1 + ‖f‖Xi
.

Then ‖·‖X is an F -norm and HK(X) is a metrisable locally convex space generated

by the increasing sequence of norms {‖·‖Xi }, see [9], pages 202–205. In this paper,

the space HK(X) is always supposed to be equipped with F -norm ‖·‖X . We also

denote the Alexiewicz norm of f by ‖f‖ = sup
x∈[a,b]

|
∫ x

a
f(t) dt|. Recall a ∈ Xi. Hence,

‖f‖ 6 ‖f‖Xi . Thus, ‖f‖
X
i in fact is a norm.

Definition 1.1 ([12], page 39). A sequence of functions {fn} is said to be control-

convergent to f on [a, b] if the following conditions are satisfied:

(i) fn(x) → f(x) almost everywhere in [a, b] as n→ ∞, where each fn is Henstock

integrable on [a, b].
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(ii) The primitives Fn of fn are ACG
⋆ uniformly in n, i.e., [a, b] is the union

of a sequence of closed sets Xi such that on each Xi the function Fn is AC
⋆(Xi)

uniformly in n, in other words, η > 0 in the definition ofAC⋆(Xi) is independent of n.

(iii) The primitives Fn converge uniformly on [a, b].

The following four theorems (Theorems 1.2–1.5) are given in [5]. However, these

four theorems are proved for the space of Denjoy integrable functions. The Denjoy

and HK integrals are equivalent, see [12], Theorems 6.12 and 6.13. Therefore, these

four theorems also hold for the space HK. In [5], the space of Denjoy integrable

functions on [a, b] is denoted by D and X = {Xi} is denoted by ∆. Furthermore,

in [5], page 520, if f ∈ D(∆) and F is its primitive, then F is assumed to have

bounded variation (in the restricted sense) on each Xi. In fact, in [5], page 518, F is

AC⋆(Xi) for each Xi. In this paper, we assume F is AC
⋆(Xi) instead of F being of

bounded variation on each Xi.

Theorem 1.2 ([5], Theorem 3.1). A sequence {fn} is Cauchy (or convergent to f)

in the space HK(X) with the norm ‖·‖X if and only if {fn} is Cauchy (or convergent

to f) in the space HK(X) with the norm ‖·‖Xi for all i.

Theorem 1.3 ([5], Theorem 3.3 (a)). If a sequence {fn} is ‖·‖
X -convergent to f

in the HK(X) space, then there exists a subsequence {fnk
} of {fn} which is control-

convergent to f in the HK space.

Theorem 1.4 ([5], Theorem 3.3 (b)). If a sequence {fn} is control-convergent to f

in the HK space, then there are X ∈ X and f ∈ HK(X) such that {fn} ⊆ HK(X)

and {fn} tends to f in HK(X).

Theorem 1.5 ([5], Theorem 3.4). The space HK(X) is complete under ‖·‖X .

2. Continuous linear operators in HK(X) and HK spaces

Let T : HK(X) → HK(X) be linear. Suppose T is continuous under ‖·‖Xi for

each i. Define

‖T ‖Xi = sup
{‖Tϕ‖Xi

‖ϕ‖Xi
: ϕ ∈ HK(X)

}

and ‖T ‖X =

∞
∑

i=1

1

2i
‖T ‖Xi

1 + ‖T ‖Xi
.

Thus, ‖T ‖X is an F -norm of T . Note that ‖Tϕ‖Xi 6 ‖T ‖Xi ‖ϕ‖Xi for all ϕ if T

is ‖·‖Xi -continuous. The operator T is continuous under ‖·‖
X if and only if T is

continuous under ‖·‖Xi for each i. However, the inequality

‖Tϕ‖X 6 ‖T ‖X‖ϕ‖X
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may not be true. Because ‖·‖X is not a norm, it is an F -norm and ‖αϕ‖X 6= |α|‖ϕ‖X .

In this paper, to prove results for ‖·‖X , we always prove the corresponding results for

norms ‖·‖Xi for each i first. Let B(HK(X)) be the space of all continuous operators

fromHK(X) toHK(X) with F -norm ‖·‖X . Let (HK(X))⋆ be the space of continuous

linear functionals defined on HK(X).

Theorem 2.1. B(HK(X)) and (HK(X))⋆ are complete.

P r o o f. The proof is standard, see [18], page 221, Proposition 3. �

It is known that control-convergence is one of the best convergences in the HK

space. On the other hand, from Theorems 1.3 and 1.4, control-convergence is related

to ‖·‖X -convergence. So we define the continuity of an operator T : HK → HK as

follows. Let T : HK → HK. Then T is said to be control-continuous if {T (ϕn)} is

control-convergent to Tϕ whenever {ϕn} is control-convergent to ϕ in the HK space.

From Theorems 1.3 and 1.4, we have:

Theorem 2.2. Let T : HK → HK be linear and T : HK(X) → HK(X) for all

X ∈ X. Then T : HK → HK is control-continuous if and only if for each X ∈ X,

T : HK(X) → HK(X) is ‖·‖X -continuous.

Let T : HK → (B, ‖·‖B), where (B, ‖·‖B) is a Banach space. The operator T is

said to be control-continuous if ‖Tϕn − Tϕ‖B → 0 as n → ∞ for each {ϕn} which

control-converges to ϕ in the space HK. By Theorems 1.3 and 1.4, we have:

Theorem 2.3. Let T : HK → (B, ‖·‖B) be linear. Then T : HK → (B, ‖·‖B)

is control-continuous if and only if for each X ∈ X, T : HK(X) → (B, ‖·‖B) is

continuous.

Theorem 2.4 (Banach-Steinhaus Theorem). For each n, let Tn : HK(X) →

HK(X) for all X ∈ X and Tn : HK → HK be linear and control-continuous.

If for each ϕ ∈ HK, {Tnϕ} is control-convergent to Tϕ in the HK space, then

T : HK → HK is a control-continuous linear operator.

P r o o f. First, we shall show that T is continuous in each Fréchet space HK(X)

under the F -norm ‖·‖X , by the classical Banach-Steinhaus Theorem for Fréchet

spaces. Note that Tn : HK(X) → HK(X) for each n. Let ϕ ∈ HK(X). The

sequence {Tnϕ} is control-convergent to Tϕ in the HK(X) space. By Theorem 1.4,

for each ϕ ∈ HK(X), ‖Tnϕ − Tϕ‖X → 0 as n → ∞. By the classical Banach-

Steinhaus Theorem, T : HK(X) → HK(X) is ‖·‖X-continuous. By Theorem 2.2,

T : HK → HK is control-continuous. �
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By Theorem 2.2 and the classical open mapping theorem for Fréchet spaces we

have:

Theorem 2.5 (Open Mapping Theorem). Let T : HK → HK be a control-

continuous linear operator and for each X ∈ X, T : HK(X) → HK(X) be surjective.

Then T is an open mapping in the sense that for eachX ∈ X, T (G) is open inHK(X)

whenever G is open in HK(X).

By Theorems 2.2 and 2.5 we have:

Theorem 2.6 (Bounded Inverse Theorem). Let T : HK → HK be a control-

continuous linear operator and for each X ∈ X, T : HK(X) → HK(X) be bijective.

Then T−1 : HK → HK is control-continuous.

Theorem 2.7 (Closed Graph Theorem). Let T : HK → HK and T : HK(X) →

HK(X) for each X ∈ X. Suppose that T has the property that whenever {ϕn} is

control-convergent to ϕ in HK and Tϕn is control-convergent to ψ, Tϕ = ψ. Then T

is control-continuous.

P r o o f. We shall apply the classical closed graph theorem to the HK(X) space.

Let ‖fn−f‖
X → 0 and ‖Tfn−g‖

X → 0 as n→ ∞. Then by Theorem 1.3, there exists

a subsequence {fnk
} of {fn} such that {fnk

} is control-convergent to f and {Tfnk
}

is control-convergent to g. By the given condition, Tf = g. By the classical closed

graph theorem, T : HK(X) → HK(X) is ‖·‖X-continuous. By Theorem 2.2, T :

HK → HK is control-continuous. �

Remark 2.8. The above four theorems (Theorems 2.4–2.7) hold true for lin-

ear operators from the HK space to a Banach space (B, ‖·‖B). For example, by

Theorem 2.3, we have:

Theorem 2.9 (Banach-Steinhaus Theorem). For each n, let Tn : HK → (B, ‖·‖B)

be a control-continuous linear operator. Suppose for each ϕ ∈ HK, ‖Tnϕ−Tϕ‖B → 0

as n→ ∞. Then T : HK → (B, ‖·‖B) is control-continuous.

Topology for the HK space has been discussed in [1], [3], [5], [8], [11], [13], [14],

[17], [19], [22]. Let BV [a, b] be the space of functions of bounded variation on [a, b].

If g ∈BV [a, b], then V (g) denotes the total variation of g on [a, b]. Define ‖g‖BV =

V (g) + |g(b)|. It is known that if f ∈ HK and g ∈ BV [a, b], then |
∫ b

a
f(x)g(x) dx| 6

‖f‖‖g‖BV , see [12], page 74, where ‖f‖ = sup
x∈[a,b]

|
∫ x

a
f(t) dt|.

Recall that if ϕ ∈ HK(X), ‖ϕ‖ 6 ‖ϕ‖Xi for all i. By Theorem 1.2 and the

above inequality, ‖·‖X -convergence implies ‖·‖-convergence. Thus, if G : HK → R is
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a ‖·‖-continuous linear functional, then G is ‖·‖X-continuous. Hence, G is control-

continuous by Theorem 1.4. The converse is also true, see [12], page 103. Hence, the

norm continuity and control-continuity of a linear functional on the HK spaces are

equivalent.

Example 2.10. Let Tn : HK → R be defined by Tn(ϕ) =
∫ b

a
gn(x)ϕ(x) dx,

where gn ∈ BV [a, b]. Then Tn is control-continuous. Suppose lim
n→∞

∫ b

a
gn(x)ϕ(x) dx

exists. Then by Theorem 2.9, T : HK → R defined by Tϕ = lim
n→∞

∫ b

a
gn(x)ϕ(x) dx is

control-continuous.

Example 2.10 is also given in [12], pages 70–71. However, the Banach-Steinhaus

Theorem is applied to a Sargent space.

Example 2.11. Let {gi} be a sequence of functions in BV [a, b] and {hi}

a sequence of functions in HK. Let Tn : HK → HK be defined by (Tnϕ)(x) =
n
∑

i=1

∫ b

a
(hi(x)gi(t))ϕ(t) dt. Then each Tn : HK → HK is a linear operator of finite

rank. Hence, Tn is control-continuous. Suppose {Tnϕ} is control-convergent to Tϕ

in HK for each ϕ ∈ HK. Then by Theorem 2.4, T : HK → HK is control-continuous.

We shall discuss the compactness of T in the next section.

Linear operators in theHK space have also been discussed in [6], [7], [15], [21], [23].

3. Compact operators in the HK(X) space

A sequence {ϕn} in HK(X) is said to be bounded if {ϕn} is bounded under ‖·‖
X
i

for each i. Let B ⊆ HK(X). The set B is said to be compact if for any bounded

sequence in B there exists a ‖·‖X -convergent subsequence.

An operator T : HK(X) → HK(X) is said to be compact if for any bounded

sequence {ϕn} in HK(X) there exists a subsequence {ϕnk
} such that {Tϕnk

} is

convergent in HK(X).

Using subsequence argument as in Banach spaces, if T : HK(X) → HK(X) is

linear and compact, then T is ‖·‖X -continuous.

The rank of an operator is the dimension of its range. It is well-known that every

finite rank continuous linear operator acting between Banach spaces is compact.

The space HK(X) is not a Banach space. It is a Fréchet space. Similar result holds

for continuous linear operators of finite rank in Fréchet spaces, see [20], page 98.

However, in [20], the result is for locally convex spaces. In the following Example 3.1,

we shall give a proof for easy reference.
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Example 3.1. Let X ∈ X be arbitrary, hj ∈ HK(X) and gj ∈ BV [a, b] for

j = 1, 2, . . . , n. Suppose K : HK(X) → HK(X) is defined by

(Kϕ)(x) =

∫ b

a

( n
∑

j=1

hj(x)gj(t)

)

ϕ(t) dt.

Then

(Kϕ)(x) =

∫ b

a

( n
∑

j=1

hj(x)gj(t)

)

ϕ(t) dt =

n
∑

j=1

hj(x)

∫ b

a

gj(t)ϕ(t) dt =

n
∑

j=1

hj(x)αj ,

where αj =
∫ b

a
gj(t)ϕ(t) dt ∈ R. Thus, K is a linear operator of finite rank.

Next, we shall prove that K is compact. Let {ϕk}
∞

k=1 be a bounded sequence

in HK(X). Hence, {‖ϕk‖
X
i }∞k=1 is bounded in R for each i. Then for each fixed i,

|αj,k| =

∣

∣

∣

∣

∫ b

a

gj(t)ϕk(t) dt

∣

∣

∣

∣

6 ‖ϕk‖V (gj) 6 ‖ϕk‖
X
i V (gj),

i.e., {αj,k}
∞

k=1 is bounded in R for j = 1, 2, . . . , n. By the Bolzano-Weierstrass

theorem, there exists a subsequence {αj,kl
} of {αj,k}

∞

k=1, converging in R for j =

1, 2, . . . , n. Thus,

‖Kϕkp
−Kϕkq

‖Xi =

∥

∥

∥

∥

n
∑

j=1

hjαj,kp
−

n
∑

j=1

hjαj,kq

∥

∥

∥

∥

X

i

6

n
∑

j=1

‖hj‖
X
i |αj,kp

− αj,kq
|.

Hence, {Kϕkl
} is a Cauchy sequence in HK(X) under ‖·‖Xi . Therefore, there exists

ψ ∈ HK(X) such that ‖Kϕkl
− Kψ‖Xi → 0 as kl → ∞. Note that ‖·‖ 6 ‖·‖Xi for

each i. Thus, ψ is independent of i. Hence, ‖Kϕkl
−Kψ‖X → 0 as kl → ∞, i.e., K is

compact. Therefore, K is ‖·‖X -continuous. We remark that we can use the same

idea to prove that K is ‖·‖X-continuous without using the fact that compactness

implies continuity.

Next we shall prove a result for a countably infinite dimensional rank.

Lemma 3.2. Let X ∈ X be arbitrary,
∞
∑

j=1

‖gj‖BV < ∞ and {hj} a sequence of

functions such that for each x, |hj(x)| 6 A(x) <∞ for all j and
∞
∑

j=1

hj(x)gj(t) exists

for any x, t ∈ [a, b]. Then for each x ∈ [a, b],
∞
∑

j=1

hj(x)gj(t) ∈ BV [a, b] and for each

ϕ ∈ HK,
∫ b

a

( ∞
∑

j=1

hj(x)gj(t)

)

ϕ(t) dt =
∞
∑

j=1

hj(x)

∫ b

a

gj(t)ϕ(t) dt.
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P r o o f. Let m,n ∈ N be fixed. For any fixed x we have

V

( n
∑

j=m

hj(x)gj(t)

)

6

n
∑

j=m

|hj(x)|V (gj(t)) 6 A(x)

n
∑

j=m

V (gj).

Then

V

( ∞
∑

j=m

hj(x)gj(t)

)

6 lim
n→∞

V

( n
∑

j=m

hj(x)gj(t)

)

6 A(x) lim
n→∞

n
∑

j=m

V (gj)

= A(x)
∞
∑

j=m

V (gj).

Thus, V (
∞
∑

j=m

hj(x)gj(t)) → 0 as m→ ∞. Hence, for each x ∈ [a, b],

V

( ∞
∑

j=1

hj(x)gj(t)

)

<∞.

Therefore,
∞
∑

j=1

hj(x)gj(t) ∈ BV [a, b] for each x ∈ [a, b]. We remark that this result,

in fact, is a consequence of the completeness of BV [a, b], see [15], page 14. Notice

that

∣

∣

∣

∣

∫ b

a

( ∞
∑

j=n+1

hj(x)gj(t)

)

ϕ(t) dt

∣

∣

∣

∣

6 ‖ϕ‖

(

V

( ∞
∑

j=n+1

hj(x)gj(t)

)

+

∞
∑

j=n+1

hj(b)gj(b)

)

< ‖ϕ‖

(

V

( ∞
∑

j=n+1

hj(x)gj(t)

)

+A(b)

∞
∑

j=n+1

|gj(b)|

)

.

Hence,
∣

∣

∣

∫ b

a

( ∞
∑

j=n+1

hj(x)gj(t)
)

ϕ(t) dt
∣

∣

∣
→ 0 as n→ ∞. Observe that

∫ b

a

∞
∑

j=1

hj(x)gj(t)ϕ(t) dt−

n
∑

j=1

∫ b

a

hj(x)gj(t)ϕ(t) dt =

∫ b

a

( ∞
∑

j=n+1

hj(x)gj(t)

)

ϕ(t) dt.

So

lim
n→∞

∫ b

a

( n
∑

j=1

hj(x)gj(t)

)

ϕ(t) dt =

∫ b

a

( ∞
∑

j=1

hj(x)gj(t)

)

ϕ(t) dt.

�
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The following lemma is proved by Abel’s transformation, see [2], Chapter page 365.

Lemma 3.3. Let {aj} be a sequence in a normed spaces S with norm ‖·‖S

and {bj} a real-valued sequence such that
∞
∑

j=1

aj and
∞
∑

j=1

|bj+1 − bj | exist. Then

lim
j→∞

bj ,
∞
∑

j=1

ajbj exist and for each m = 1, 2, . . .,

(3.1)

∥

∥

∥

∥

∞
∑

j=m

ajbj

∥

∥

∥

∥

S

6 2A

∞
∑

j=m

|bj+1 − bj|+

∥

∥

∥

∥

∞
∑

k=m

ak

∥

∥

∥

∥

S

|b|,

where A = sup
n

‖
n
∑

j=1

aj‖S and b = lim
j→∞

bj.

Lemma 3.4. Let X ∈ X be arbitrary,
∞
∑

j=1

‖gj‖BV < ∞ and {hj} a sequence of

functions in HK(X) with
∞
∑

j=1

hj ∈ HK(X).

(i) Then for each x, there exists 0 < A(x) <∞ such that |hj(x)| 6 A(x) for each j

and
∞
∑

j=1

hj(x)gj(t) exists for any x, t ∈ [a, b].

(ii) Let ϕ ∈ HK(X) and αj =
∫ b

a
gj(t)ϕ(t) dt. Then

∞
∑

j=1

|αj+1 − αj | < ∞ and
∞
∑

j=1

hjαj ∈ HK(X).

P r o o f. (i) By given condition,
∞
∑

j=1

hj exists. Hence, there exists 0 < A(x) < ∞

such that |hj(x)| 6 A(x) for each j. Applying Lemma 3.3 to two real-valued se-

quences with aj = hj(x) and bj = gj(t) we have that
∞
∑

j=1

hj(x)gj(t) exists for any

x, t ∈ [a, b].

(ii) First,

|αj+1 − αj | =

∣

∣

∣

∣

∫ b

a

(gj+1(t)− gj(t))ϕ(t) dt

∣

∣

∣

∣

6 (V (gj+1) + |gj+1(b)|+ V (gj) + |gj(b)|)‖ϕ‖

= (‖gj+1‖BV + ‖gj‖BV )‖ϕ‖.

Hence,
∞
∑

j=1

|αj+1 − αj | < ∞, i.e., {αj} is of bounded variation. For each x ∈ [a, b],

applying Lemma 3.3 to two real-valued sequences, aj = hj(x) and bj = αj , we have

that
∞
∑

j=1

hj(x)αj exists.
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Now apply Lemma 3.3 to a real-valued sequence {αj} and a sequence {hj(x)} in

the normed space with norm ‖·‖Xi . We have that
∞
∑

j=1

hjαj exists under norm ‖·‖Xi .

Thus,
{ n
∑

j=1

hjαj

}

is Cauchy under ‖·‖Xi for each i. Hence,
{ n
∑

j=1

hjαj

}

is Cauchy

under ‖·‖X . Therefore, there exists q ∈ HK(X) such that
∥

∥

∥

n
∑

j=1

hjαj − q
∥

∥

∥

X

→ 0 as

n→ ∞.

By Theorem 1.3, there exists a subsequence of
{ n
∑

j=1

hjαj

}

which converges point-

wise to q almost everywhere. However, for each x,
∞
∑

j=1

hj(x)αj exists. Thus, for

almost all x, q(x) =
∞
∑

j=1

hj(x)αj . Hence,
∥

∥

∥

∞
∑

j=n

hjαj

∥

∥

∥

X

→ 0 as n → ∞. Therefore,
∞
∑

j=1

hjαj ∈ HK(X). �

Theorem 3.5. Let X ∈ X be arbitrary, ϕ ∈ HK(X),
∞
∑

j=1

‖gj‖BV < ∞ and
∞
∑

j=1

hj ∈ HK(X). Let K, Kn : HK(X) → HK(X) be linear operators defined by

(Knϕ)(x) =

∫ b

a

( n
∑

j=1

hj(x)gj(t)

)

ϕ(t) dt

and

(Kϕ)(x) =

∫ b

a

( ∞
∑

j=1

hj(x)gj(t)

)

ϕ(t) dt.

Then ‖Kn−K‖X → 0 as n→ ∞. Furthermore, K is ‖·‖X -continuous and compact.

P r o o f. By Lemmas 3.2 and 3.4 (i) for each x, t ∈ [a, b],
∞
∑

j=1

hj(x)gj(t) exists and

Kϕ(x) =

∫ b

a

( ∞
∑

j=1

hj(x)gj(t)

)

ϕ(t) dt =

∞
∑

j=1

hj(x)

∫ b

a

gj(t)ϕ(t) dt =

∞
∑

j=1

hj(x)αj ,

where αj =
∫ b

a
gj(t)ϕ(t) dt. Thus, (K −Kn)ϕ(x) =

∞
∑

j=n+1

hj(x)αj .

Hence, ‖(K −Kn)ϕ‖
X
i =

∥

∥

∥

∞
∑

j=n+1

hjαj

∥

∥

∥

X

i
for each i. By Lemma 3.4 (ii),

‖(K −Kn)(ϕ)‖
X → 0 asn→ ∞.

By the Banach-Steinhaus theorem, K is ‖·‖X -continuous. Now, we shall prove

that ‖Kn − K‖X → 0 as n → ∞. Recall that {αj} is of bounded variation, i.e.,
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∞
∑

j=1

|αj+1 − αj | < ∞. Let α = lim
n→∞

αn. Apply Lemma 3.3 to {aj}, where aj = hj

with norm ‖·‖Xi and bj = αj , use inequality (3.1). We have

‖(K −Kn)ϕ‖
X
i =

∥

∥

∥

∥

∞
∑

j=n+1

hjαj

∥

∥

∥

∥

X

i

6 2 sup
j

∥

∥

∥

∥

j
∑

k=1

hk

∥

∥

∥

∥

X

i

∞
∑

j=n+1

|αj − αj+1|+

∥

∥

∥

∥

∞
∑

k=n+1

hk

∥

∥

∥

∥

X

i

|α|

6 2 sup
j

∥

∥

∥

∥

j
∑

k=1

hk

∥

∥

∥

∥

X

i

( ∞
∑

j=n+1

(‖gj+1‖BV + ‖gj‖BV )

)

‖ϕ‖Xi

+

∥

∥

∥

∥

∞
∑

k=n+1

hk

∥

∥

∥

∥

X

i

( ∞
∑

j=1

‖gj‖BV

)

‖ϕ‖Xi .

Thus,

‖(K −Kn)‖
X
i = sup

ϕ

‖(K −Kn)ϕ‖
X
i

‖ϕ‖Xi

6 2 sup
j

∥

∥

∥

∥

j
∑

k=1

hk

∥

∥

∥

∥

X

i

∞
∑

j=n+1

(‖gj+1‖BV + ‖gj‖BV )

+

∥

∥

∥

∥

∞
∑

k=n+1

hk

∥

∥

∥

∥

X

i

( ∞
∑

j=1

‖gj‖BV

)

.

Hence, ‖Kn−K‖Xi → 0 as n→ ∞ for each i. Therefore, ‖Kn−K‖X → 0 as n→ ∞.

Note that each Kn is a linear operator of finite rank. Hence, each Kn is compact.

Thus, K is compact, i.e., for any bounded sequence {ϕn} in HK(X) there exists

a subsequence {ϕnk
} such that {Kϕnk

} is convergent in HK(X) under ‖·‖X . �

4. Compact operators in the HK space

Let T : HK → HK and T : HK(X) → HK(X) for each X ∈ X. The operator

T : HK → HK is said to be compact if T : HK(X) → HK(X) is compact for each

X ∈ X. By Theorems 1.2 and 1.3, T : HK → HK is compact if for any fixed X ∈ X

for any bounded sequence {ϕn} under ‖·‖
X , there exists a subsequence {ϕnk

} such

that {Tϕnk
} is control-convergent. We remark that the space HK is the uncountable

union of Fréchet spaces HK(X). In this paper we are unable to define a suitable

F -norm on the space HK. However, it is known that every control-convergent se-

quence in the space HK always belongs to a HK(X) space for some X ∈ X. There-

fore, we define the compactness of an operator T : HK → HK in the above way.
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Theorem 4.1. Let X ∈ X be arbitrary,
∞
∑

j=1

‖gj‖BV < ∞,
∞
∑

j=1

hj ∈ HK(X) and

∥

∥

∥

∞
∑

j=n

hj

∥

∥

∥

X

i
→ 0 as n→ ∞ for each i. Let k(x, t) =

∞
∑

j=1

hj(x)gj(t) and K : HK → HK

be defined by

(Kϕ)(x) =

∫ b

a

k(x, t)ϕ(t) dt =

∫ b

a

( ∞
∑

j=1

hj(x)gj(t)

)

ϕ(t) dt.

Then K is compact in the HK space.

P r o o f. Let Y ∈ X be fixed and ϕ ∈ HK(Y ). Then ϕ ∈ HK(Y ) ⊆ HK(X ∩ Y ),

{hj} ⊆ HK(X) ⊆ HK(X ∩ Y ) and
∞
∑

j=1

hj ∈ HK(X) ⊆ HK(X ∩ Y ). Note that

‖·‖X∩Y
i 6 ‖·‖Xi for each i. Hence,

∥

∥

∥

∞
∑

j=n

hj

∥

∥

∥

X∩Y

i
→ 0 as n → ∞ for each i. Ap-

plying Theorem 3.5 to the HK(X ∩ Y ) space, Kϕ is well-defined and K is com-

pact in the HK(X ∩ Y ) space. Let {ϕn} be a bounded sequence in HK(Y ). Then

{ϕn} ⊆ HK(Y ) ⊆ HK(X∩Y ) and {ϕn} is bounded in (HK(X∩Y ), ‖·‖X∩Y ). There-

fore, {Kϕn} has a subsequence which is convergent in HK(X ∩ Y ) under ‖·‖X∩Y .

Thus, by Theorem 1.3, there exists a subsequence {ϕnk
} of {ϕn} such that {Kϕnk

}

is control-convergent. We have proved that for any fixed Y ∈ X, for any bounded

sequence {ϕn} in (HK(Y ), ‖·‖Y ) there exists a subsequence {ϕnk
} such that {Kϕnk

}

is control-convergent. Hence, K is compact in the HK space. �

By Theorems 1.4 and 4.1 we have:

Corollary 4.2. Let
∞
∑

j=1

‖gj‖BV <∞. Let {hi} be a sequence of functions in HK

and
{ n
∑

j=1

hj

}∞

n=1
be control-convergent to

∞
∑

j=1

hj . Let k(x, t) =
∞
∑

j=1

hj(x)gj(t) and

K : HK → HK be defined by

(Kϕ)(x) =

∫ b

a

k(x, t)ϕ(t) dt =

∫ b

a

( ∞
∑

j=1

hj(x)gj(t)

)

ϕ(t) dt.

Then K is compact in the HK space.

Now we shall consider nonlinear operators. Let h(t, s) be a Carathéodory function

from [a, b]×R to R, i.e., the function h(t, ·) is continuous for almost all t ∈ [a, b] and

the function h(·, s) is measurable for every s ∈ R.

Let u be a function defined on [a, b] and Hu a function defined on [a, b] and

(Hu)(t) = h(t, u(t)). It is well-known, see [10], page 358, Lemma 17.6, that if
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H : L1[a, b] → L1[a, b], i.e., (Hu)(t) = h(t, u(t)) ∈ L1[a, b] whenever u ∈ L1[a, b],

then there exist α > 0, p and q ∈ L1[a, b] such that

q(t) + α|s| 6 h(t, s) 6 p(t) + α|s|

for almost all t ∈ [a, b] and s ∈ R. It is known, see [4], Theorem 1.4 and its proof,

that if H : HK → HK, then H maps every control-convergent sequence to a control-

convergent sequence.

Suppose H : HK → HK. We conjecture that there exist p, q ∈ HK and α > 0

such that

(4.1) q(t) + αs 6 h(t, s) 6 p(t) + αs

for almost all t ∈ [a, b] and all s ∈ R.

In the following, we assume that condition (4.1) holds for h(t, s). Let k(x, t) be

given as in Theorem 4.1. Define K : HK → HK as follows: Let u ∈ HK. Then

Ku ∈ HK and

(Ku)(x) =

∫ b

a

k(x, t)u(t) dt.

Then the composite operatorKH maps the HK space to the HK space. Let u ∈ HK.

Then (KH)(u) ∈ HK and for each x ∈ [a, b]

((KH)(u))(x) = (K(Hu))(x) =

∫ b

a

k(x, t)h(t, u(t)) dt.

The operator H is called a Nemytskii operator. The composite operator KH is

called a Hammerstein operator.

Corollary 4.3. The nonlinear Hammerstein operator KH : HK → HK given

above is compact.

P r o o f. First, using inequality (4.1), the Nemytskii operator H maps every

bounded sequence under ‖·‖Xi to a bounded sequence under ‖·‖
X
i . By Theorem 4.1

the operator K is compact. Therefore, the composite Hammerstein operator KH

from HK to HK is compact. �
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5. Integral equations

Fredholm integral equations of the second kind are equations of the form

(5.1) ϕ(x) = f(x) + λ

∫ b

a

k(x, t)ϕ(t) dt,

where f : [a, b] → R and k : [a, b]×[a, b] → R. The function k is known as the integral

kernel.

In this section, let f, ϕ ∈ HK[a, b]. We first discuss the case when the integral ker-

nel is separable, i.e., k(x, t) = h(x)g(t). Suppose that h ∈ HK[a, b] and g ∈ BV [a, b].

Then, as in the classical case,

ϕ(x) = f(x) + λh(x)

∫ b

a
f(t)g(t) dt

1 − λ
∫ b

a
g(t)h(t) dt

is the unique solution of a Fredholm integral equation with separable integral kernel

whenever λ
∫ b

a
g(t)h(t) dt 6= 1.

For the case when λ
∫ b

a
g(t)h(t) dt = 1, the equation has no solution if

λ

∫ b

a

f(t)g(t) dt 6= 0.

When λ
∫ b

a
f(t)g(t) dt = 0, as in the classical case, the general solution of the Fred-

holm integral equation is of the form

ϕ(x) = βh(x) + f(x)

for any real constant β.

Let gj ∈ BV [a, b], f, hj ∈ HK for j = 1, 2, . . . , n and

k(x, t) =

n
∑

j=1

hj(x)gj(t)

for x, t ∈ [a, b]. Then the corresponding Fredholm integral equation has properties

analogous to those well known for the classical case. Let us recall that linear Fredholm

equations with regulated Banach space valued solutions and nondegenerate kernel

have been treated in [6].

Now, let us turn back to the case when the kernel k and the operator K are

like in Theorem 4.1 or Corollary 4.2, the operator H is like in Corollary 4.3 and
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f ∈ HK. Put Tϕ = λKϕ + f for ϕ ∈ HK. Let {αj} be of bounded variation, i.e.,
∞
∑

j=1

|αj+1−αj| <∞. By Lemma 3.3, α = lim
n→∞

αn exists. Recall that
∞
∑

j=1

hj ∈ HK(X)

in Theorem 4.1. From (3.1) for each i we have

‖Kϕ‖Xi =

∥

∥

∥

∥

∞
∑

j=1

hjαj

∥

∥

∥

∥

X

i

6 2 sup
j

∥

∥

∥

∥

j
∑

k=1

hk

∥

∥

∥

∥

X

i

∞
∑

j=1

|αj − αj+1|+

∥

∥

∥

∥

∞
∑

k=1

hk

∥

∥

∥

∥

X

i

|α|

6 2 sup
j

∥

∥

∥

∥

j
∑

k=1

hk

∥

∥

∥

∥

X

i

( ∞
∑

j=n+1

(‖gj+1‖BV + ‖gj‖BV )

)

‖ϕ‖Xi

+

∥

∥

∥

∥

∞
∑

k=n+1

hk

∥

∥

∥

∥

X

i

( ∞
∑

j=1

‖gj‖BV

)

‖ϕ‖Xi

6 3 sup
j

∥

∥

∥

∥

j
∑

k=1

hk

∥

∥

∥

∥

X

i

( ∞
∑

j=1

‖gj‖BV

)

‖ϕ‖Xi .

Therefore,

‖K‖Xi = sup
ϕ

‖Tϕ‖Xi
‖ϕ‖Xi

6 3 sup
j

∥

∥

∥

∥

j
∑

k=1

hk

∥

∥

∥

∥

X

i

∞
∑

j=1

‖gj‖BV .

We assume that 3 sup
j

∥

∥

∥

j
∑

k=1

hk

∥

∥

∥

X

i

∞
∑

j=1

‖gj‖BV 6 µ for all i. Then ‖K‖Xi 6 µ for all i.

Theorem 5.1. Suppose ‖Kψ‖Xi 6 µ‖ψ‖Xi for each i and ψ, i.e., ‖K‖Xi 6 µ for

all i. If 0 < λ < 1/µ, then there exists a unique fixed point u ∈ HK(X), i.e.,

u(x) = λ(Ku)(x) + f(x) = λ

∫ b

a

k(x, t)u(t) dt+ f(x).

This solution u is given by a convergent Neumann series u(x) =
∞
∑

j=1

λjKjf and

‖u‖X 6 ‖f‖X/(1− µu).

P r o o f. The proof is standard. Let u0(x) = f(x), un(x) = λKun−1(x) + f(x),

n = 1, 2, . . . Then un+1(x) =
n+1
∑

j=0

λjKjf(x), n = 1, 2, . . . Since ‖K‖Xi 6 µ for all i we

have

‖Kjf‖Xi = ‖KKj−1f‖Xi 6 µ‖Kj−1f‖Xi 6 µj‖f‖Xi .

Thus, for any m,n ∈ N we have

‖un − um‖Xi =

∥

∥

∥

∥

n
∑

j=m+1

λjKjf

∥

∥

∥

∥

X

i

6

n
∑

j=m+1

λj‖Kjf‖Xi =

( n
∑

j=m+1

(λµ)j
)

‖f‖Xi .
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Since 0 < λµ < 1 by our assumptions, the sequence {un} is Cauchy under ‖·‖
X
i for

each i. Thus, {un} is Cauchy under ‖·‖
X . Hence, lim

n→∞

un =
∞
∑

j=0

µjKjf exists in

HK(X) if 0 < λ < 1/µ.

Let u(x) =
∞
∑

j=0

µj(Kjf)(x). Then u(x) = lim
n→∞

un(x). By Theorem 3.5 the opera-

tor K is ‖·‖X -continuous. From the iteration equation un(x) = λKun−1(x) + f(x),

we have

lim
n→∞

un(x) = λK
(

lim
n→∞

un−1(t)
)

+ f(x)

= λ

∫ b

a

k(x, t)
(

lim
n→∞

un−1(t)
)

dt+ f(x)

= λ

∫ b

a

k(x, t)u(t) dt+ f(x).

Thus, if 0 < λ < 1/µ, we can find u ∈ HK(X) such that

u(x) = λ

∫ b

a

k(x, t)u(t) dt+ f(x).

Now we shall prove that the fixed point u is unique. Suppose that there are two

fixed points, namely u and v. Then u = λKu + f and v = λKv + f . Therefore,

u− v = λK(u− v) and

‖u− v‖Xi = λ‖K(u− v)‖Xi 6 λ‖K‖Xi ‖(u− v)‖Xi 6 λµ‖(u− v)‖Xi .

Hence, (1− λµ)‖u− v‖Xi 6 0. Recall that 1− λµ > 0. It implies that ‖u− v‖Xi = 0

for all i. Thus, ‖u− v‖X = 0. Consequently, u = v. Therefore, the fixed point u is

unique.

Now we shall prove that ‖u‖X 6 1/(1− λµ)‖f‖X . First, ‖u‖Xi 6 ‖f‖Xi /(1− λµ)

for all i. Hence,

‖u‖X =

∞
∑

i=1

1

2i
‖u‖Xi

1 + ‖u‖Xi

6

∞
∑

i=1

1

2i
‖f‖Xi /(1− λµ)

1 + ‖f‖Xi /(1− λµ)

6

( ∞
∑

i=1

1

2i
‖f‖Xi

1 + ‖f‖Xi /(1− λµ)

)

( 1

1− λµ

)

6

( ∞
∑

i=1

1

2i
‖f‖Xi

1 + ‖f‖Xi

)

( 1

1− λµ

)

6 ‖f‖X
( 1

1− λµ

)

.

�
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Remark 5.2. We remark that although µ is not easy to find, Theorem 5.1

says that if λ is a small enough positive number, then a unique fixed point exists.

Furthermore, it seems that Theorem 5.1 is a fixed point theorem for the HK(X)

space only. In fact, if {hj} and
∞
∑

j=1

hj are in the HK space, then they are in HK(X)

for some X ∈ X. Hence, Theorem 5.1 is also a fixed point theorem for the HK space.

Theorem 5.3 (Tychonoff’s theorem, [16], Theorem A). Let A be a convex subset

of a locally convex topological vector space. Suppose T is a continuous operator

which maps A into a compact subset of A. Then T has a fixed point.

Theorem 5.4. Let Tϕ = λ(KH)ϕ+ f , where KH is given before Corollary 4.3.

Assume that p, q, f ∈ HK(X), (‖p‖Xi + ‖q‖Xi )/‖f‖Xi 6 β and ‖K‖Xi 6 µ for all i

and 0 < λ < 1/µ(β + 2α). Then T : HK(X) → HK(X) has a fixed point.

P r o o f. From (4.1) we have

q(t) + αϕ(t) 6 Hϕ(t) = h(t, ϕ(t)) 6 p(t) + αϕ(t).

Then

‖Hϕ‖Xi 6 max{‖q‖Xi + α‖ϕ‖Xi , ‖p‖
X
i + α‖ϕ‖Xi } 6 ‖q‖Xi + ‖p‖Xi + α‖ϕ‖Xi .

Since K is ‖·‖X -continuous, i.e., K is ‖·‖Xi -continuous for each i, we have

‖KHϕ‖Xi 6 ‖K‖Xi ‖Hϕ‖Xi 6 ‖K‖Xi (‖q‖Xi + ‖p‖Xi + α‖ϕ‖Xi ).

Let αi = ‖f‖Xi and A = {u ∈ HK(X) : ‖u‖Xi 6 2αi for all i}. Then A is convex

and bounded. Hence, for every ϕ ∈ A we have

‖Tϕ‖Xi 6 λ‖(KH)ϕ‖Xi + ‖f‖Xi

6 λ‖K‖Xi (‖q‖Xi + ‖p‖Xi + α‖ϕ‖Xi ) + ‖f‖Xi

6 λµ(‖q‖Xi + ‖p‖Xi + α‖ϕ‖Xi ) + ‖f‖Xi

6 λµ(‖q‖Xi + ‖p‖Xi + α(2αi)) + αi

= λµαi

(‖q‖Xi + ‖p‖Xi
αi

+ 2α
)

+ αi

6 λµαi(β + 2α) + αi

<
1

µ(β + 2α)
µαi(β + 2α) + αi = 2αi.

Then TA ⊆ A. The operator T is compact since KH is compact. Thus, TA is

compact. Hence, by Tychonoff’s theorem, T has a fixed point in A. �
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Remark 5.5. We remark that although 1/µ(β + 2α) is not easy to find, Theo-

rem 5.4 says that if λ is a small enough positive number, then T : HK(X) → HK(X)

has a fixed point. Furthermore, similarly to Remark 5.2 of Theorem 5.1, Theorem 5.4

is also a fixed point theorem for the HK space, since if p, q, f are in the HK space,

then p, q, f are in HK(X) for some X ∈ X.
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