Previous |  Up |  Next

Article

Keywords:
index; conjugacy class size; Baer group
Summary:
Let $N$ be a normal subgroup of a group $G$. The structure of $N$ is given when the $G$-conjugacy class sizes of $N$ is a set of a special kind. In fact, we give the structure of a normal subgroup $N$ under the assumption that the set of $G$-conjugacy class sizes of $N$ is $(p_{1n_1}^{a_{1n_1}},\cdots , p_{1 1}^{a_{11}}, 1) \times \cdots \times (p_{rn_r}^{a_{rn_r}},\cdots , p_{r1}^{a_{r1}}, 1)$, where $r>1$, $n_i>1$ and $p_{ij}$ are distinct primes for $i\in \{1, 2, \cdots , r\}$, $j\in \{1, 2, \cdots , n_i\}$.
References:
[1] Akhlaghi, Z., Beltrán, A., Felipe, M. J., Khatami, M.: Normal subgroups and $p$-regular $G$-class sizes. J. Algebra 336 (2011), 236-241. DOI 10.1016/j.jalgebra.2011.04.004 | MR 2802540 | Zbl 1241.20034
[2] Baer, R.: Group elements of prime power index. Trans. Am. Math. Soc. 75 (1953), 20-47. DOI 10.1090/S0002-9947-1953-0055340-0 | MR 55340 | Zbl 0051.25702
[3] Beltrán, A., Felipe, M. J.: Finite groups with a disconnected $p$-regular conjugacy class graph. Commun. Algebra 32 (2004), 3503-3516. DOI 10.1081/AGB-120039627 | MR 2097475 | Zbl 1081.20040
[4] Bertram, E. A., Herzog, M., Mann, A.: On a graph related to conjugacy classes of groups. Bull. London Math. Soc. 22 (1990), 569-575. DOI 10.1112/blms/22.6.569 | MR 1099007 | Zbl 0743.20017
[5] Camina, A. R.: Arithmetical conditions on the conjugacy class numbers of a finite group. J. Lond. Math. Soc., II. Ser. 5 (1972), 127-132. DOI 10.1112/jlms/s2-5.1.127 | MR 0294481 | Zbl 0242.20025
[6] Camina, A. R.: Finite groups of conjugate rank 2. Nagoya Math. J. 53 (1974), 47-57. DOI 10.1017/S0027763000016019 | MR 346054 | Zbl 0255.20014
[7] Camina, A. R., Camina, R. D.: Implications of conjugacy class size. J. Group Theory 1 (1998), 257-269. DOI 10.1515/jgth.1998.017 | MR 1633180 | Zbl 0916.20015
[8] Camina, A. R., Camina, R. D.: Recognizing direct products from their conjugate type vectors. J. Algebra 234 (2000), 604-608. DOI 10.1006/jabr.2000.8535 | MR 1800744 | Zbl 0968.20017
[9] Itô, N.: On finite groups with given conjugate types. I. Nagoya Math. J. 6 (1953), 17-28. DOI 10.1017/S0027763000016937 | MR 61597 | Zbl 0053.01202
[10] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups: An Introduction. Universitext. Springer, New York (2004). DOI 10.1007/b97433 | MR 2014408 | Zbl 1047.20011
[11] Zhao, X., Guo, X.: On the normal subgroup with exactly two $G$-conjugacy class sizes. Chin. Ann. Math., Ser. B 30 (2009), 427-432. DOI 10.1007/s11401-008-0088-8 | MR 2529448 | Zbl 1213.20031
Partner of
EuDML logo