Previous |  Up |  Next

Article

Keywords:
retract; locally nilpotent derivation; kernel; Zariski's cancellation problem
Summary:
Let $k$ be a field of characteristic zero and $B$ a $k$-domain. Let $R$ be a retract of $B$ being the kernel of a locally nilpotent derivation of $B$. We show that if $B=R\oplus I$ for some principal ideal $I$ (in particular, if $B$ is a UFD), then $B= R^{[1]}$, i.e., $B$ is a polynomial algebra over $R$ in one variable. It is natural to ask that, if a retract $R$ of a $k$-UFD $B$ is the kernel of two commuting locally nilpotent derivations of $B$, then does it follow that $B\cong R^{[2]}$? We give a negative answer to this question. The interest in retracts comes from the fact that they are closely related to Zariski's cancellation problem and the Jacobian conjecture in affine algebraic geometry.
References:
[1] Abhyankar, S. S., Moh, T.-t.: Embeddings of the line in the plane. J. Reine Angew. Math. 276 (1975), 148-166. DOI 10.1515/crll.1975.276.148 | MR 0379502 | Zbl 0332.14004
[2] Chakraborty, S., Dasgupta, N., Dutta, A. K., Gupta, N.: Some results on retracts of polynomial rings. J. Algebra 567 (2021), 243-268. DOI 10.1016/j.jalgebra.2020.08.030 | MR 4158731 | Zbl 1468.13060
[3] Costa, D. L.: Retracts of polynomial rings. J. Algebra 44 (1977), 492-502. DOI 10.1016/0021-8693(77)90197-1 | MR 0429866 | Zbl 0352.13008
[4] Craighero, P. C.: A result on $m$-flats in $\mathbb{A}_k^n$. Rend. Semin. Mat. Univ. Padova 75 (1986), 39-46. MR 0847656 | Zbl 0601.14010
[5] Das, P., Dutta, A. K.: On codimension-one $\mathbb{A}^1$-fibration with retraction. J. Commut. Algebra 3 (2011), 207-224. DOI 10.1216/JCA-2011-3-2-207 | MR 2813472 | Zbl 1241.13004
[6] Freudenburg, G.: Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia of Mathematical Sciences 136. Invariant Theory and Algebraic Transformation Groups 7. Springer, Berlin (2017). DOI 10.1007/978-3-662-55350-3 | MR 3700208 | Zbl 1391.13001
[7] Gong, S.-J., Yu, J.-T.: Test elements, retracts and automorphic orbits. J. Algebra 320 (2008), 3062-3068. DOI 10.1016/j.jalgebra.2008.07.012 | MR 2442010 | Zbl 1159.16018
[8] Gupta, N.: On the cancellation problem for the affine space $\mathbb{A}^3$ in characteristic $p$. Invent. Math. 195 (2014), 279-288. DOI 10.1007/s00222-013-0455-2 | MR 3148104 | Zbl 1309.14050
[9] Gupta, N.: On the family of affine threefolds $x^my=F(x,z,t)$. Compos. Math. 150 (2014), 979-998. DOI 10.1112/S0010437X13007793 | MR 3223879 | Zbl 1327.14251
[10] Gupta, N.: On Zariski's cancellation problem in positive characteristic. Adv. Math. 264 (2014), 296-307. DOI 10.1016/j.aim.2014.07.012 | MR 3250286 | Zbl 1325.14078
[11] Jelonek, Z.: The extension of regular and rational embeddings. Math. Ann. 277 (1987), 113-120. DOI 10.1007/BF01457281 | MR 0884649 | Zbl 0611.14010
[12] Liu, D., Sun, X.: A class of retracts of polynomial algebras. J. Pure Appl. Algebra 222 (2018), 382-386. DOI 10.1016/j.jpaa.2017.04.009 | MR 3694460 | Zbl 1387.14147
[13] Mikhalev, A. A., Shpilrain, V., Yu, J.-T.: Combinatorial Methods: Free Groups, Polynomials, and Free Algebras. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 19. Springer, New York (2004). DOI 10.1007/978-0-387-21724-6 | MR 2014326 | Zbl 1039.16024
[14] Nagamine, T.: A note on retracts of polynomial rings in three variables. J. Algebra 534 (2019), 339-343. DOI 10.1016/j.jalgebra.2019.05.040 | MR 3979078 | Zbl 1423.13063
[15] Shpilrain, V., Yu, J.-T.: Polynomial retracts and the Jacobian conjecture. Trans. Am. Math. Soc. 352 (2000), 477-484. DOI 10.1090/S0002-9947-99-02251-5 | MR 1487631 | Zbl 0944.13011
[16] Sun, X.: Automorphisms of the endomorphism semigroup of a free algebra. Int. J. Algebra Comput. 25 (2015), 1223-1238. DOI 10.1142/S0218196715500381 | MR 3438159 | Zbl 1345.08007
[17] Suzuki, M.: Propriétés topologiques des polynômes de deux variables complexes et automorphismes algébriques de l'espace $C^2$. J. Math. Soc. Japan 26 (1974), 241-257 French. DOI 10.2969/jmsj/02620241 | MR 0338423 | Zbl 0276.14001
[18] Essen, A. van den: Polynomial Automorphisms and the Jacobian Conjecture. Progress in Mathematics 190. Birkhäuser, Basel (2000). DOI 10.1007/978-3-0348-8440-2 | MR 1790619 | Zbl 0962.14037
[19] Essen, A. van den: Around the cancellation problem. Affine Algebraic Geometry Osaka University Press, Osaka (2007), 463-481. MR 2330485 | Zbl 1129.14086
[20] Yu, J.-T.: Automorphic orbit problem for polynomial algebras. J. Algebra 319 (2008), 966-970. DOI 10.1016/j.jalgebra.2007.03.033 | MR 2379089 | Zbl 1132.13008
Partner of
EuDML logo