Previous |  Up |  Next

Article

Keywords:
distance function; DC function; subset of ${\mathbb R}^2$
Summary:
We give a complete characterization of closed sets $F \subset {\mathbb R}^2$ whose distance function $d_F:= {\rm dist}(\cdot ,F)$ is DC (i.e., is the difference of two convex functions on ${\mathbb R}^2$). Using this characterization, a number of properties of such sets is proved.
References:
[1] Bačák, M., Borwein, J. M.: On difference convexity of locally Lipschitz functions. Optimization 60 (2011), 961-978. DOI 10.1080/02331931003770411 | MR 2860286 | Zbl 1237.46007
[2] Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications 58. Birkhäuser, Boston (2004). DOI 10.1007/b138356 | MR 2041617 | Zbl 1095.49003
[3] Duda, J.: Curves with finite turn. Czech. Math. J. 58 (2008), 23-49. DOI 10.1007/s10587-008-0003-1 | MR 2402524 | Zbl 1167.46321
[4] Folland, G. B.: Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. John Wiley & Sons, New York (1999). MR 1681462 | Zbl 0924.28001
[5] Fu, J. H. G.: Integral geometric regularity. Tensor Valuations and Their Applications in Stochastic Geometry and Imaging Lecture Notes in Mathematics 2177. Springer, Cham (2017), 261-299 \99999DOI99999 10.1007/978-3-319-51951-7_10 . MR 3702376 | Zbl 1368.53052
[6] Fu, J. H. G., Pokorný, D., Rataj, J.: Kinematic formulas for sets defined by differences of convex functions. Adv. Math. 311 (2017), 796-832. DOI 10.1016/j.aim.2017.03.003 | MR 3628231 | Zbl 1403.53062
[7] Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math. 9 (1959), 707-713. DOI 10.2140/pjm.1959.9.707 | MR 0110773 | Zbl 0093.06401
[8] Pokorný, D., Rataj, J.: Normal cycles and curvature measures of sets with d.c. boundary. Adv. Math. 248 (2013), 963-985. DOI 10.1016/j.aim.2013.08.022 | MR 3107534 | Zbl 1286.58002
[9] Pokorný, D., Rataj, J., Zajíček, L.: On the structure of WDC sets. Math. Nachr. 292 (2019), 1595-1626. DOI 10.1002/mana.201700253 | MR 3982330 | Zbl 1429.26022
[10] Pokorný, D., Zajíček, L.: On sets in $\mathbb R^d$ with DC distance function. J. Math. Anal. Appl. 482 (2020), Article ID 123536, 14 pages. DOI 10.1016/j.jmaa.2019.123536 | MR 4015277 | Zbl 1434.26028
[11] Pokorný, D., Zajíček, L.: Remarks on WDC sets. Commentat. Math. Univ. Carol. 62 (2021), 81-94. DOI 10.14712/1213-7243.2021.006 | MR 4270468
[12] Roberts, A. W., Varberg, D. E.: Convex Functions. Pure and Applied Mathematics 57. Academic Press, New York (1973). MR 0442824 | Zbl 0271.26009
[13] Saks, S.: Theory of the Integral. Dover Publications, New York (1964). MR 0167578 | Zbl 1196.28001
[14] Shapiro, A.: On concepts of directional differentiability. J. Optimization Theory Appl. 66 (1990), 477-487. DOI 10.1007/BF00940933 | MR 1080259 | Zbl 0682.49015
[15] Tuy, H.: Convex Analysis and Global Optimization. Springer Optimization and Its Applications 110. Springer, Cham (2016). DOI 10.1007/978-3-319-31484-6 | MR 3560830 | Zbl 1362.90001
[16] Veselý, L., Zajíček, L.: Delta-convex mappings between Banach spaces and applications. Diss. Math. 289 (1989), 48 pages. MR 1016045 | Zbl 0685.46027
[17] Veselý, L., Zajíček, L.: On vector functions of bounded convexity. Math. Bohem. 133 (2008), 321-335. DOI 10.21136/MB.2008.140621 | MR 2494785 | Zbl 1199.47242
[18] Willard, S.: General Topology. Addison-Wesley Series in Mathematics. Addison-Wesley Publishing, Reading (1970). MR 0264581 | Zbl 0205.26601
Partner of
EuDML logo