[2] Alber, Y. I.:
Generalized projection operators in Banach spaces: Properties and applications. Funct. Differ. Equ. 1 (1993), 1-21.
MR 1297965 |
Zbl 0882.47046
[3] Alber, Y. I.:
Metric and generalized projection operators in Banach spaces: Properties and applications. Theory and Applications of Nonlinear Operator of Accretive and Monotone Type Lecture Notes in Pure and Applied Mathematics 178. Marcel Dekker, New York (1996), 15-50.
MR 1386667 |
Zbl 0883.47083
[6] Bauschke, H. H., Wang, X., Yao, L.: General resolvents for monotone operators: Characterization and extension. Biomedical Mathematics: Promising Directions in Imagine, Therapy Planning and Inverse Problem (Huangguoshu 2008) Medical Physics Publishing, Madison (2010), 57-74 Y. Censor, M. Jiang, G. Wang.
[8] Bertsekas, D. P., Tsitsiklis, J. N.:
Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont (1997).
MR 3587745 |
Zbl 0743.65107
[10] Borwein, J. M., Reich, S., Sabach, S.:
A characterization of Bregman firmly nonexpansive operators using a new monotonicity concept. J. Nonlinear Convex Anal. 12 (2011), 161-184.
MR 2816416 |
Zbl 1221.26019
[11] Bregman, L. M.:
The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. U.S.S.R. Comput. Math. Math. Phys. 7 (1967), 200-217 translation from Zh. Vychisl. Mat. Mat. Fiz. 7 1967 620-631.
DOI 10.1016/0041-5553(67)90040-7 |
MR 0215617 |
Zbl 0186.23807
[12] Butnariu, D., Resmerita, E.:
Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 2006 (2006), Article ID 84919, 39 pages.
DOI 10.1155/AAA/2006/84919 |
MR 2211675 |
Zbl 1130.47046
[15] Chang, S.-S., Wen, C.-F., Yao, J.-C.:
A generalized forward-backward splitting method for solving a system of quasi variational inclusions in Banach spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113 (2019), 729-747.
DOI 10.1007/s13398-018-0511-2 |
MR 3942363 |
Zbl 07086844
[18] Cholamjiak, P., Pholasa, N., Suantai, S., Sunthrayuth, P.:
The generalized viscosity explicit rules for solving variational inclusion problems in Banach spaces. (to appear) in Optimization.
DOI 10.1080/02331934.2020.1789131 |
MR 4343296
[23] Iyer, R., Bilmes, J. A.: Submodular-Bregman and the Lovász-Bregman divergences with applications. Advances in Neural Information Processing Systems 25 (NIPS 2012) MIT Press, Cambridge (2012), 9 pages.
[26] López, G., Martín-Márquez, V., Wang, F., Xu, H.-K.:
Forward-backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. 2012 (2012), Article ID 109236, pages 25 pages.
DOI 10.1155/2012/109236 |
MR 2955015 |
Zbl 1252.47043
[32] Nielsen, F., Nock, R.:
Generalizing skew Jensen divergences and Bregman divergences with comparative convexity. IEEE Signal Process. Lett. 24 (2017), 1123-1127.
DOI 10.1109/LSP.2017.2712195
[35] Reich, S.:
A weak convergence theorem for the alternating method with Bregman distances. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type Lecture Notes in Pure and Applied Mathematics 178. Marcel Dekker, New York (1996), 313-318.
MR 1386686 |
Zbl 0943.47040
[38] Reich, S., Sabach, S.:
Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces. Fixed-Point Algorithms for Inverse Problems in Science and Engineering Springer Optimization and Its Applications 49. Springer, New York (2011), 301-316.
DOI 10.1007/978-1-4419-9569-8_15 |
MR 2858843 |
Zbl 1245.47015
[44] Shehu, Y., Cai, G.:
Strong convergence result of forward-backward splitting methods for accretive operators in Banach spaces with applications. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112 (2018), 71-87.
DOI 10.1007/s13398-016-0366-3 |
MR 3742991 |
Zbl 06836237
[45] Suantai, S., Cholamjiak, P., Sunthrayuth, P.:
Iterative methods with perturbations for the sum of two accretive operators in $q$-uniformly smooth Banach spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113 (2019), 203-223.
DOI 10.1007/s13398-017-0465-9 |
MR 3902940 |
Zbl 1450.47026
[46] Sunthrayuth, P., Cholamjiak, P.:
Iterative methods for solving quasi-variational inclusion and fixed point problem in $q$-uniformly smooth Banach spaces. Numer. Algorithms 78 (2018), 1019-1044.
DOI 10.1007/s11075-017-0411-0 |
MR 3827320 |
Zbl 06916361
[52] Zegeye, H., Shahzad, N.:
An algorithm for finding a common point of the solution set of a variational inequality and the fixed point set of a Bregman relatively nonexpansive mapping. Appl. Math. Comput. 248 (2014), 225-234.
DOI 10.1016/j.amc.2014.08.071 |
MR 3276677 |
Zbl 1338.47115