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Abstract. The aim of this paper is to propose two modified forward-backward splitting
algorithms for zeros of the sum of a maximal monotone operator and a Bregman inverse
strongly monotone operator in reflexive Banach spaces. We prove weak and strong conver-
gence theorems of the generated sequences by the proposed methods under some suitable
conditions. We apply our results to study the variational inequality problem and the equi-
librium problem. Finally, a numerical example is given to illustrate the proposed methods.
The results presented in this paper improve and generalize many known results in recent
literature.
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1. Introduction

Let E be a real Banach space with its dual space E∗. We study the so-called

quasi-inclusion problem: find z ∈ E such that

(1.1) 0 ∈ (A+B)z,
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where A : E → E∗, B : E ⊸ E∗ are single- and set-valued mappings, respectively.

In particular, if E = H , where H is a real Hilbert space, then E∗ = H . This

problem (1.1) has received considerable attention in recent decades due to its wide

theoretical value in nonlinear analysis or optimization theory and wide spectrum of

applications such as in signal processing, image reconstruction and machine learning.

One of the simplest methods for solving (1.1) is the forward-backward splitting

method (see [19], [25], [48]), which is of the following form: for any x1 ∈ H and

λ > 0,

(1.2) xn+1 = ResBλ ◦Aλ(xn) ∀n > 1,

where ResBλ := (I + λB)−1 is the resolvent of B, Aλ := I − λA and I denotes the

identity mapping on H . In the context of this method, the operators ResBλ and Aλ

are also often referred to as the backward and forward operators, respectively. Note

that this method includes, as special cases, the proximal point algorithm (when

A = 0) (see [17], [21], [41]) and the gradient method (see [8], [20]). However, from

the numerical point of view, the weak convergence of this method is not enough to

make it efficient.

In order to obtain the strong convergence result, Takahashi et al. [47] introduced

the following Halpern-type forward-backward splitting method for solving (1.1) in

a Hilbert space H : for any x1, u ∈ H ,

(1.3) xn+1 = αnu+ (1− αn)Res
B
λn

◦Aλn
(xn) ∀n > 1,

where {λn} ⊂ (0,∞), {αn} ⊂ (0, 1), A is an α-inverse strongly monotone mapping

and B is a maximal monotone operator. It was shown that the sequence {xn}

generated by (1.3) converges strongly to a solution of (1.1).

In 2012, López et al. [26] extended the above result to a q-uniformly smooth and

uniformly convex Banach space E. They proposed the following iterative process

with errors an and bn: for any x1, u ∈ E,

(1.4) xn+1 = αnu+ (1− αn)(Res
B
λn

(xn − λn(Axn + an)) + bn) ∀n > 1,

where {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1], B is a maximal monotone operator and A is

an α-inverse strongly monotone mapping. They also proved that the sequence {xn}

generated by (1.4) converges strongly to a solution of (1.1) under appropriate as-

sumptions.

Very recently in 2019, Kimura and Nakajo [24] proposed the following iterative

process for approximating a solution of (1.1) in a 2-uniformly convex and uniformly

smooth Banach space E: for any x1, u ∈ E,

(1.5) xn+1 = ResBλn
◦Aλn

J−1(αnJu+ (1− αn)Jxn − λnBxn) ∀n > 1,
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where {λn} ⊂ (0,∞), {αn} ⊂ (0, 1], A is an α-inverse strongly monotone mapping,

ResBλn
:= (J + λnB)−1J is the resolvent of a maximal monotone operator B, Aλ :=

J−1(J − λnA) and J denotes the normalized duality mapping from E into 2E
∗

.

Under appropriate assumptions, they proved that the sequence generated by (1.5)

converges strongly to a solution of (1.1).

In recent years, various modified forward-backward splitting algorithms have been

studied and developed by many researchers in Hilbert spaces and extended to Banach

spaces (see e.g. [14], [13], [15], [16], [18], [24], [26], [43], [44], [45], [46], [49]). The

following important question arises here:

Question: Can we extend the above-mentioned results to a more general class of

forward-backward operators in more general Banach spaces which are not necessarily

uniformly convex and uniformly smooth?

To answer the above question in this paper, we introduce two modified forward-

backward splitting algorithms for solving (1.1), where A is a Bregman inverse strongly

monotone mapping and B is a maximal monotone mapping in the framework of

reflexive Banach spaces. The paper is organized as follows. In Section 2, we collect

definitions and results which are needed for our further analysis. The weak and strong

convergence theorems of the proposed algorithms are established in Section 3. Some

applications of our results to the variational inequality problem and the equilibrium

problem are considered in Section 4, and a numerical example is given in Section 5.

2. Preliminaries

Throughout this paper, let E be a real reflexive Banach space with its dual E∗

and f : E → (−∞,∞] be a proper, lower semicontinuous and convex function. We

denote by 〈x, j〉 the value of the functional j ∈ E∗ at x ∈ E. The subdifferential of f

is defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈y − x, x∗〉 6 f(y) ∀ y ∈ E}, x ∈ E.

The Fenchel conjugate of f is the function f∗ : E∗ → (−∞,∞] defined by

f∗(x∗) = sup
x∈E

{〈x, x∗〉 − f(x)}.

It is known that x∗ ∈ ∂f(x) is equivalent to f(x) + f∗(x∗) = 〈x, x∗〉 (see [39],

Theorem 23.5 (d)). We denote by domf = {x ∈ E : f(x) < ∞} the domain of f .

The function f on E is said to be cofinite if domf∗ = E∗ and f is said to be strongly

coercive if lim
‖x‖→∞

f(x)/‖x‖ = ∞.
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For any x ∈ int(dom f) and y ∈ E, the directional derivative of f at x in the

direction y ∈ E is given by

(2.1) f ′(x, y) = lim
t→0+

f(x+ ty)− f(x)

t
.

The function f is said to be Gâteux differentiable at x if the limit as t → 0 in (2.1)

exists for each y. In this case, the gradient of f at x is the linear function ∇f(x) :

E → E∗ defined by 〈y,∇f(x)〉 = f ′(x, y) for any y ∈ E. For more details about

gradient, we recommend [7], Remark 3.32. The function f is said to be Gâteux

differentiable if it is Gâteux differentiable for any x ∈ int(dom f). It is known

that if f is Gâteux differentiable at x, then ∂f(x) is single-valued. Conversely,

if f is continuous at x and ∂f(x) is single-valued, then f is Gâteux differentiable

at x and ∇f(x) = ∂f(x) (see [4], Proposition 2.40). The function f is said to be

Fréchet differentiable at x if the limit (2.1) is attained uniformly in ‖y‖ = 1 and f

is said to be uniformly Fréchet differentiable on a subset C of E if the limit (2.1)

is attained uniformly for x ∈ C and ‖y‖ = 1. It is well known that every Fréchet

differentiable function is Gâteux differentiable and if f is Fréchet differentiable, then

it is continuous, but if f is Gâteux differentiable, then it is not necessary that f is

continuous (see [34], p. 142).

The function f : E → (−∞,∞] is said to be Legendre ([36], p. 25) if and only if

it satisfies the following two conditions:

(L1) int(dom f) 6= ∅ and f is Gâteux differentiable with dom∇f = int(dom f),

(L2) int(dom f∗) 6= ∅ and f∗ is Gâteux differentiable with dom∇f∗ = int(dom f∗).

In a reflexive Banach space, we always obtain (∂f)−1 = ∂f∗ (see [9], p. 83). This

fact, when combined with conditions (L1) and (L2), implies the following facts:

(i) ∇f is a bijection with ∇f = (∇f∗)−1 (see [5], Theorem 5.10),

(ii) ran∇f = dom∇f∗ = int(dom f∗) and ran∇f∗ = dom∇f = int(dom f) (see

[37], p. 123),

where ran∇f denotes the range of ∇f .

Also, conditions (L1) and (L2), in conjunction with [5], Theorem 5.4, imply that

the functions f and f∗ are strictly convex on the interior of their respective domains.

If f : E → (−∞,∞] is additionally assumed to be Gâteux differentiable, then the

function Df : dom f × int(dom f) → [0,∞) defined by

(2.2) Df (x, y) = f(x)− f(y)− 〈x− y,∇f(y)〉

is called the Bregman distance with respect to f [11]. In general, Df is not symmetric

and it does not satisfy the triangle inequality. Clearly,Df (x, x) = 0, butDf(x, y) = 0
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may not imply x = y. It is known that the Bregman distance is a certain useful

substitute for a distance. Next, we clarify several examples of the Bregman distance

which are shown in the following:

E x am p l e 2.1. Let E is a uniformly convex and uniformly smooth Banach

space. Define f(x) = ‖x‖2 for all x ∈ E. Then ∇f(x) = 2Jx, where J is the

normalized duality mapping defined by Jx = {j ∈ E∗ : 〈x, j〉 = ‖x‖2 = ‖j‖2}. So,

we obtain

Df (x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 := ϕ(x, y),

where ϕ is called the Lyapunov function, which was studied in [3], [35]. Also, if E is

a Hilbert space, then ϕ(x, y) = ‖x− y‖2, which is the Euclidean norm distance.

E x am p l e 2.2. Define f(x) = −
m∑
i=1

ln xi for all x = (x1, x2, . . . , xm)⊤ ∈ R
m
+ :=

{x ∈ R
m : xi > 0}. Then ∇f(x) = −(1/x1, 1/x2, . . . , 1/xm)⊤. So, we obtain the

Itakura-Saito distance given by

Df (x, y) =

m∑

i=1

(xi

yi
− ln

(xi

yi

)
− 1

)
.

E x am p l e 2.3. Define f(x) = xi lnxi for all x = (x1, x2, . . . , xm)⊤ ∈ R
m
+ :=

{x ∈ R
m : xi > 0}. Then ∇f(x) = (1 + ln(x1), 1 + ln(x2), . . . , 1 + ln(xm))⊤. So, we

obtain the Kullback-Leibler distance given by

Df (x, y) =
m∑

i=1

(
xi ln

(xi

yi

)
+ yi − xi

)
.

E x am p l e 2.4. Define f(x) = 1
2x

⊤Qx for all x = (x1, x2, . . . , xm)⊤ ∈ R
m. Then

∇f(x) = Qx, where Q = diag(1, 2, . . . ,m). So, we obtain the squared Mahalanobis

distance given by

Df (x, y) =
1

2
(x− y)⊤Q(x− y).

For more examples of Bregman distances, we recommend [23], [31], [32].

The modulus of total convexity of f at x ∈ dom f is the function vf (x, ·) : [0,∞) →

[0,∞] defined by

vf (x, t) = inf{Df(y, x) : y ∈ dom f, ‖y − x‖ = t}.

The function f is called totally convex at x if vf (x, t) > 0, whenever t > 0, and

is called totally convex if it is totally convex at any point x ∈ int(dom f). It is

well known that if f is totally convex and Fréchet differentiable, then f is cofinite
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(see [36], Proposition 2.3, p. 39). The function f is said to be totally convex on

bounded sets if vf (X, t) > 0 for any nonempty bounded subset X of E and t > 0,

where the modulus of total convexity of the function f on the set X is the function

vf : int(dom f)× [0,∞) → [0,∞] defined by

vf (X, t) = inf{vf (x, t) : x ∈ X ∩ dom f}.

Let Br := {x ∈ E : ‖x‖ 6 r} for all r > 0. Then a function f : E → R is said to

be uniformly convex on bounded subsets of E, if ̺r(t) > 0 for all r, t > 0, where

̺r : [0,∞) → [0,∞) is defined by

̺r(t) = inf
x,y∈Br,‖x−y‖=t,α∈(0,1)

αf(x) + (1 − α)f(y)− f(αx+ (1− α)y)

α(1− α)
,

for all t > 0. It is well known that f is totally convex on bounded sets if and only

if f is uniformly convex on bounded sets (see [12], Theorem 2.10).

Let C be a nonempty subset of E. Let S : C → C be a mapping. A point p ∈ C

is a fixed point of S if p = Sp and we denote by F (S) the set of fixed points of S,

i.e., F (S) = {x ∈ C : x = Sx}. A point p in C is said to be an asymptotic fixed

point [35] of S, if C contains a sequence {xn} in C such that {xn} converges weakly

to p and lim
n→∞

‖xn − Sxn‖ = 0. The set of asymptotic fixed points of S will be

denoted by F̂ (S).

Let C be a nonempty subset of int(dom f). The mapping S : C → int(dom f) is

said to be:

(i) Bregman firmly nonexpansive (BFNE) if

〈Sx− Sy,∇f(Sx)−∇f(Sy)〉 6 〈Sx− Sy,∇f(x)−∇f(y)〉 ∀x, y ∈ C.

(ii) Bregman strongly nonexpansive (BSNE) with F̂ (S) 6= ∅ if

Df(p, Sx) 6 Df (p, x) ∀x ∈ C, p ∈ F̂ (S)

and if whenever {xn} ⊂ C is bounded, p ∈ F̂ (S) and

lim
n→∞

(Df (p, xn)−Df (p, Sxn)) = 0,

it follows that lim
n→∞

Df (xn, Sxn) = 0.

As shown in [38], Lemma 15.6, p. 308, if S is BFNE and f is a Legendre function

which is bounded, uniformly Fréchet differentiable and totally convex on bounded
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subsets of E, then F (S) = F̂ (S) and F (S) is closed and convex. It also follows that

every BFNE mapping is BSNE with respect to F (S) = F̂ (S).

Recall that the Bregman projection with respect to f of x ∈ int(dom f) onto the

nonempty, closed and convex set C ⊂ dom f is the unique P f
C(x) ⊂ C satisfying

(2.3) Df (P
f
C(x), x) = inf{Df(y, x) : y ∈ C}.

It can be characterized by the following variational inequality [12], Corollary 4.4:

(2.4) 〈y − P f
C(x),∇f(x) −∇f(P f

C(x))〉 6 0 ∀ y ∈ C.

Moreover,

(2.5) Df (y, P
f
C(x)) +Df (P

f
C(x), x) 6 Df (y, x) ∀ y ∈ C.

If E is a uniformly convex and uniformly smooth Banach space and f(x) = ‖x‖2

for all x ∈ E, then P f
C coincides with the generalized projection ΠC (see [2], Defini-

tion 7.2), and if E is a Hilbert space, then P f
C coincides with the metric projection PC .

Let f : E → R be a Legendre function. Let Vf : E × E∗ → [0,∞) associated

with f be defined by

(2.6) Vf (x, x
∗) = f(x)− 〈x, x∗〉+ f∗(x∗) ∀x ∈ E, x∗ ∈ E∗.

From [28], Proposition 1, we know the following properties:

(i) Vf is nonnegative and convex in the second variable.

(ii)

(2.7) Vf (x, x
∗) = Df (x,∇f∗(x∗)) ∀x ∈ E, x∗ ∈ E∗.

(iii)

(2.8) Vf (x, x
∗) + 〈∇f∗(x∗)− x, y∗〉 6 Vf (x, x

∗ + y∗) ∀x ∈ E, x∗, y∗ ∈ E∗.

Since Vf is convex in the second variable, we have for all z ∈ E,

(2.9) Df

(
z,∇f∗

( N∑

i=1

ti∇f(xi)

))
6

N∑

i=1

tiDf (z, xi),

where {xi}Ni=1 ⊂ E and {ti}Ni=1 with
N∑
i=1

ti = 1.
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For a set-valued operator A : E ⊸ E∗, we define its domain, range and graph

as follows: domA = {x ∈ E : Ax 6= ∅}, ranA =
⋃
{Ax : x ∈ domA} and G(A) =

{(x, x∗) ∈ E × E∗ : x∗ ∈ Ax}. An operator A is said to be monotone, if for each

(x, x∗), (y, y∗) ∈ G(A), we have 〈x − y, x∗ − y∗〉 > 0. A monotone operator A is

said to be maximal, if its graph is not contained in the graph of any other monotone

operator on E. It is known that if f : E → R is Gâteux differentiable, strictly convex

and cofinite, then A is maximal monotone if and only if ran(∇f+λA) = E∗ for λ > 0

(see [6], Corollary 2.4).

Let f : E → (−∞,∞] be a Fréchet differentiable function which is bounded on

bounded subsets of E and let A be a maximal monotone operator. Then the resolvent

ResfλA : E ⊸ E of A for λ > 0, is defined by

ResfλA = (∇f + λA)−1 ◦ ∇f.

The mapping A satisfying ran(∇f − λA) ⊂ ran(∇f) is called Bregman inverse

strongly monotone if domA ∩ int(dom f) 6= ∅ and for any x, y ∈ int(dom f) and

each u ∈ Ax, v ∈ Ay, we have

〈u− v,∇f∗(∇f(x)− u)−∇f∗(∇f(y)− v)〉 > 0.

For any operator A : E ⊸ E∗, the anti-resolvent Af
λ : E ⊸ E of A, for λ > 0, is

defined by

Af
λ = ∇f∗ ◦ (∇f − λA).

Lemma 2.5. Let f : E → R be a Fréchet differentiable Legendre function which

is bounded on bounded subsets of E. Let A : E → E∗ be a Bregman inverse strongly

monotone mapping and B : E ⊸ E∗ be a maximal monotone operator. Define a

mapping Tλx := ResfλB ◦Af
λ(x) for x ∈ E and λ > 0. Then F (Tλ) = (A+B)−10.

P r o o f. Let x ∈ E and λ > 0. We see that

x = Tλx ⇔ x = ResfλB ◦Af
λ(x)

⇔ x = (∇f + λB)−1 ◦ ∇f ◦ (∇f∗ ◦ (∇f − λA)x)

⇔ x = (∇f + λB)−1 ◦ (∇f − λA)x)

⇔ ∇f(x) − λAx ∈ ∇f(x) + λBx

⇔ 0 ∈ λ(A +B)x

⇔ x ∈ (A+B)−10.

The proof is completed. �
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Lemma 2.6 ([33], Theorem 3.1). Let f : E → R be a strongly coercive, bounded

and Fréchet differentiable Legendre function which is totally convex on bounded

subsets of E. Let A : E → E∗ be a Bregman inverse strongly monotone mapping and

B : E ⊸ E∗ be a maximal monotone operator. Then the following statements hold:

(i) Df (z,Res
f
λB ◦Af

λ(x))+Df (Res
f
λB ◦Af

λ(x), x) 6 Df (z, x) for all z ∈ (A+B)−10,

x ∈ E and λ > 0.

(ii) ResfλB ◦Af
λ is a BSNE operator such that F (ResfλB ◦Af

λ(x)) = F̂ (ResfλB ◦Af
λ(x)).

We shall use the following notation in this paper:

⊲ xn → x means that {xn} converges strongly to x,

⊲ xn ⇀ x means that {xn} converges weakly to x.

The mapping A : E → E∗ is called weakly sequentially continuous if for any

sequence {xn} ⊂ E, xn ⇀ x implies that Axn ⇀∗ Ax.

Lemma 2.7 ([28], Proposition 9). Let f : E → R be a Legendre function such that

∇f is weakly sequentially continuous. Suppose that the sequence {xn} is bounded

and that lim
n→∞

Df (u, xn) exists for any weak subsequential limit u of {xn}. Then

{xn} converges weakly to u.

Lemma 2.8 ([36], Lemma 3.1). Let f : E → R be a Gâteux differentiable and

totally convex function. Suppose that x ∈ E. If {Df(x, xn)} is bounded, then the

sequence {xn} is bounded.

Lemma 2.9 ([30], Lemma 2.4). Let E be a Banach space and f : E → R be

a Gâteux differentiable function which is uniformly convex on bounded subsets of E.

Suppose that {xn} and {yn} are two sequences in E. Then lim
n→∞

Df (xn, yn) = 0 if

and only if lim
n→∞

‖xn − yn‖ = 0.

Lemma 2.10 ([27], Lemma 3.1). Let {an} and {cn} be nonnegative real sequences

such that

an+1 6 (1− δn)an + bn + cn,

where {δn} is a sequence in (0, 1) and {bn} is a real sequence. Assume that
∞∑
n=1

cn < ∞. Then the following results hold:

(i) If bn/δn 6 M for some M > 0, then {an} is a bounded sequence.

(ii) If
∞∑

n=1
δn = ∞ and lim sup

n→∞
bn/δn 6 0, then lim

n→∞
an = 0.
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Lemma 2.11 ([22], Lemma 7). Assume that {sn} is a nonnegative real sequence

such that

sn+1 6 (1− δn)sn + δnτn

and

sn+1 6 sn − ηn + ̺n,

where {δn} is a sequence in (0, 1), {ηn} is a nonnegative real sequence and {τn},

{̺n} are real sequences such that

(i)
∞∑

n=1
δn = ∞,

(ii) lim
n→∞

̺n = 0,

(iii) lim
k→∞

ηnk
= 0 implies lim

k→∞
sup τnk

6 0 for any subsequence {nk} of {n}.

Then lim
n→∞

sn = 0.

3. Main results

In this section, we propose two modifications of a forward-backward splitting

method for solving (1.1) in reflexive Banach spaces. In order to prove the con-

vergence results, we assume the following:

Assumption 3.1.

(i) Let E be a real reflexive Banach space.

(ii) Let f : E → R be a strongly coercive, bounded and Fréchet differentiable Leg-

endre function which is totally convex on bounded subsets of E.

(iii) Let A : E → E∗ be a Bregman inverse strongly monotone mapping and

B : E ⊸ E∗ be a maximal monotone mapping.

(iv) The solution set (A+B)−10 of (1.1) is nonempty.

3.1. Weak convergence theorem. In this subsection, we propose a modifica-

tion of the Mann-type forward-backward splitting method and prove its weak con-

vergence.

Algorithm 3.2. For a given x1 ∈ E, let {xn} be a sequence generated by

(3.1) xn+1 = ∇f∗(αn∇f(xn) + (1 − αn)∇f(ResfλB ◦Af
λ(xn))) ∀n > 1,

where {αn} ⊂ [0, 1) and λ > 0.

We now prove a weak convergence theorem for Algorithm 3.2.
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Theorem 3.3. Assume that Assumption 3.1 is satisfied. Let {xn} be a sequence

generated by Algorithm 3.2. Assume that lim sup
n→∞

αn < 1. Suppose, in addition,

that ∇f is weakly sequentially continuous on E. Then {xn} converges weakly to

a point in (A+B)−10.

P r o o f. Let w ∈ (A+B)−10. Then from (2.9) and Lemma 2.6 (i), we have

(3.2) Df (w, xn+1) = Df (w,∇f∗(αn∇f(xn) + (1− αn)∇f(ResfλB ◦Af
λ(xn))))

6 αnDf (w, xn) + (1− αn)Df (w,Res
f
λB ◦Af

λ(xn))

6 αnDf (w, xn) + (1− αn)Df (w, xn)

= Df (w, xn).

This shows that lim
n→∞

Df(w, xn) exists and, consequently, {Df(w, xn)} is bounded.

Hence, by Lemma 2.8, we have that {xn} is bounded. This implies that {Res
f
λB ◦

Af
λ(xn)} is bounded. From Lemma 2.6 (i), we have

(3.3) Df (w, xn+1) 6 αnDf (w, xn) + (1− αn)Df (w,Res
f
λB ◦Af

λ(xn))

6 αnDf (w, xn) + (1− αn)(Df (w, xn)−Df (Res
f
λB ◦Af

λ(xn), xn)),

which implies that

(3.4) (1− αn)Df (Res
f
λB ◦Af

λ(xn), xn) 6 Df (w, xn)−Df (w, xn+1).

Since lim
n→∞

Df (w, xn) exists, we have

(3.5) lim
n→∞

Df (Res
f
λB ◦Af

λ(xn), xn) = 0.

Moreover, from Lemma 2.9, we have

(3.6) lim
n→∞

‖ResfλB ◦Af
λ(xn)− xn‖ = 0.

By the reflexivity of the Banach space E and the boundedness of {xn}, there exists

a subsequence {xnk
} of {xn} such that xnk

⇀ x̂ ∈ E as k → ∞. From (3.6), we note

that ‖ResfλB ◦ Af
λ(xnk

) − xnk
‖ → 0 as k → ∞, then we have x̂ ∈ F̂ (ResfλB ◦ Af

λ) =

F (ResfλB ◦Af
λ), and hence x̂ ∈ (A +B)−10. By Lemma 2.7, we conclude that {xn}

converges weakly to a point in (A+B)−10. This completes the proof. �

If αn = 0 for all n > 1, then we have the following result for the forward-backward

splitting method in a reflexive Banach space.
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Corollary 3.4. Let {xn} be a sequence generated by x1 ∈ E and

(3.7) xn+1 = ResfλB ◦Af
λ(xn) ∀n > 1.

Then {xn} converges weakly to a point in (A+B)−10.

If E is a uniformly convex Banach space which is also uniformly smooth and

f(x) = ‖x‖2 for all x ∈ E, then we have the following result for the Mann-type

forward-backward splitting method.

Corollary 3.5. Let J be a duality mapping from E into E∗ such that J is weakly

sequentially continuous. Let A : E → E∗ be a Bregman inverse strongly monotone

mapping with respect to the function f(x) = ‖x‖2 and let B : E ⊸ E∗ be a maximal

monotone mapping. Let {xn} be a sequence generated by x1 ∈ E and

(3.8) xn+1 = J−1(αnJxn + (1− αn)J(Res
B
λ ◦Aλ(xn))) ∀n > 1,

where ResBλ := (J + λB)−1J , Aλ := J−1(J − λA) for λ > 0 and {αn} ⊂ [0, 1).

Suppose that lim sup
n→∞

αn < 1. Then {xn} converges weakly to a point in (A+B)−10.

3.2. Strong convergence theorem. In this subsection, we propose a strong con-

vergence theorem for another modification of the forward-backward splitting method

based on the Halpern-type iteration.

Algorithm 3.6. For given u, x1 ∈ E, let {xn} be a sequence generated by

(3.9)

{
yn = ∇f∗(αn∇f(u) + (1− αn)∇f(ResfλB ◦Af

λ(xn))),

xn+1 = ∇f∗(βn∇f(xn) + (1− βn)∇f(yn)) ∀n > 1,

where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and λ > 0.

Theorem 3.7. Assume that Assumption 3.1 is satisfied. Let {xn} be a se-

quence generated by Algorithm 3.6. Suppose that lim
n→∞

αn = 0,
∞∑

n=1
αn = ∞ and

lim sup
n→∞

βn < 1. Then {xn} converges strongly to z = P f
(A+B)−10(u), where P

f
(A+B)−10

is the Bregman projection of E onto (A+B)−10.

P r o o f. Let w ∈ (A+B)−10. Then we have

(3.10) Df (w, yn) = Df (w,∇f∗(αn∇f(u) + (1− αn)∇f(ResfλB ◦Af
λ(xn))))

6 αnDf(w, u) + (1− αn)Df (w,Res
f
λB ◦Af

λ(xn))

6 αnDf(w, u) + (1− αn)Df (w, xn).
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It follows that

(3.11) Df (w, xn+1) = Df(w,∇f∗(βn∇f(xn) + (1− βn)∇f(yn)))

6 βnDf (w, xn) + (1− βn)Df (w, yn)

6 βnDf (w, xn) + (1− βn)(αnDf (w, u) + (1− αn)Df (w, xn))

= (1− (1− βn)αn)Df (w, xn) + (1 − βn)αnDf (w, u).

By Lemma 2.10 (i), we have that {Df (w, xn)} is bounded. Hence, {xn} is bounded

by Lemma 2.8. Let z = P f
(A+B)−10(u). From (2.7), (2.8), (2.9), and Lemma 2.6 (i),

we have

(3.12) Df (z, yn) = Df (z,∇f∗(αn∇f(u) + (1− αn)∇f(ResfλB ◦Af
λ(xn))))

= Vf (z, αn∇f(u) + (1− αn)∇f(ResfλB ◦Af
λ(xn)))

6 Vf (z, αn∇f(u) + (1− αn)∇f(ResfλB ◦Af
λ(xn))

− αn(∇f(u)−∇f(z))) + 〈αn(yn − z),∇f(u)−∇f(z)〉

= Vf (z, αn∇f(z) + (1 − αn)∇f(ResfλB ◦Af
λ(xn)))

+ 〈αn(yn − z),∇f(u)−∇f(z)〉

= Df (z,∇f∗(αn∇f(z) + (1− αn)∇f(ResfλB ◦Af
λ(xn))))

+ 〈αn(yn − z),∇f(u)−∇f(z)〉

6 αnDf (z, z) + (1− αn)Df (z,Res
f
λB ◦Af

λ(xn))

+ αn〈yn − z,∇f(u)−∇f(z)〉

6 (1− αn)(Df (z, xn)−Df (Res
f
λB ◦Af

λ(xn), xn))

+ αn〈yn − z,∇f(u)−∇f(z)〉.

It follows that

(3.13) Df(z, xn+1) 6 βnDf (z, xn) + (1 − βn)Df (z, yn)

6 (1− (1− βn)αn)Df (z, xn)

− (1− βn)(1− αn)Df (Res
f
λB ◦Af

λ(xn), xn)

+ αn(1 − βn)〈yn − z,∇f(u)−∇f(z)〉.

For each n > 1, we put sn = Df (z, xn), δn = (1−βn)αn, τn = 〈yn−z,∇f(u)−∇f(z)〉,

ηn = (1− βn)(1−αn)Df (Res
f
λB ◦Af

λ(xn), xn) and ̺n = αn(1− βn)〈yn − z,∇f(u)−

∇f(z)〉. Then (3.13) reduces to the following formulae:

(3.14) sn+1 6 (1− δn)sn + δnτn, n > 1,

and

(3.15) sn+1 6 sn − ηn + ̺n, n > 1.
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Since
∞∑
n=1

αn = ∞ and lim sup
n→∞

βn < 1, it follows that
∞∑
n=1

δn = ∞. Since lim
n→∞

αn = 0,

we have lim
n→∞

̺n = 0. In order to complete the proof, using Lemma 2.11, it is sufficient

to show that lim
k→∞

ηnk
= 0 implies lim sup

k→∞
τnk

6 0 for any subsequence {nk} of {n}.

Let {nk} be a subsequence of {n} such that lim
k→∞

ηnk
= 0. Then, we have

(3.16) lim
k→∞

Df (Res
f
λB ◦Af

λ(xnk
), xnk

) = 0.

By Lemma 2.9, we also have

(3.17) lim
k→∞

‖ResfλB ◦Af
λ(xnk

)− xnk
‖ = 0.

Since f is uniformly Fréchet differentiable, it follows that ∇f is uniformly continuous

on bounded subsets of E (see [51], Proposition 3.6.3), then

(3.18) ‖∇f(ResfλB ◦Af
λ(xnk

))−∇f(xnk
)‖ → 0.

From (3.18), we have

(3.19) ‖∇f(ynk
)−∇f(xnk

)‖ 6 ‖∇f(ynk
)−∇f(ResfλB ◦Af

λ(xnk
))‖

+ ‖∇f(ResfλB ◦Af
λ(xnk

))−∇f(xnk
)‖

= αnk
‖∇f(u)−∇f(ResfλB ◦Af

λ(xnk
))‖

+ ‖∇f(ResfλB ◦Af
λ(xnk

))−∇f(xnk
)‖ → 0.

Since f is strongly coercive and uniformly convex on bounded sets, it follows that∇f∗

is uniformly continuous on bounded subsets of E∗ (see [51], Theorem 3.5.10), then

(3.20) lim
k→∞

‖ynk
− xnk

‖ = lim
k→∞

‖∇f∗(∇f(ynk
))−∇f∗(∇f(xnk

))‖ = 0.

By the reflexivity of the Banach space E and the boundedness of {xnk
}, there exists

a subsequence {xnki
} of {xnk

} such that xnki
⇀ x̂ ∈ E as i → ∞ and

(3.21) lim sup
k→∞

〈xnk
− z,∇f(u)−∇f(z)〉 = lim

i→∞
〈xnki

− z,∇f(u)−∇f(z)〉.

Since ‖ResfλB ◦Af
λ(xnki

)−xnki
‖ → 0 as i → ∞, it follows that x̂ ∈ F̂ (ResfλB ◦Af

λ) =

F (ResfλB ◦Af
λ). This implies that x̂ ∈ (A+B)−10. So we obtain

(3.22) lim sup
k→∞

〈xnk
− z,∇f(u)−∇f(z)〉 = 〈x̂− z,∇f(u)−∇f(z)〉 6 0.

Furthermore, from (3.20), we also have

(3.23) lim sup
k→∞

〈ynk
− z,∇f(u)−∇f(z)〉 6 0.

This means that lim sup
k→∞

τnk
6 0. We conclude by Lemma 2.11 that lim

n→∞
sn = 0.

Therefore, xn → z as n → ∞. This completes the proof. �
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R em a r k 3.8. (1) Compare the results in [14], [13]. Our results are proved

without the strict assumption λ < (αq/κq)
1/(q−1), where α > 0, 1 < q 6 2 and κq is

the q-uniform smoothness coefficient of E (see [50] for more detail).

(2) Compare Theorem 3.7 with other works in [29], [47], [52], [53]. The assumption

lim inf
n→∞

βn > 0 can be dropped.

If βn = 0 for all n > 1, then we have the following result for the Halpern-type

forward-backward splitting method in a reflexive Banach space.

Corollary 3.9. Let {xn} be a sequence generated by u, x1 ∈ E and

(3.24) xn+1 = ∇f∗(αn∇f(u) + (1− αn)∇f(ResfλB ◦Af
λ(xn))) ∀n > 1,

where {αn} ⊂ (0, 1) and λ > 0. Suppose that lim
n→∞

αn = 0 and
∞∑

n=1
αn = ∞.

Then {xn} converges strongly to z = P f
(A+B)−10(u), where P

f
(A+B)−10 is the Bregman

projection of E onto (A+B)−10.

If E is a uniformly convex Banach space which is also uniformly smooth and

f(x) = ‖x‖2 for all x ∈ E, then we have the following result for the Halpern-type

forward-backward splitting method.

Corollary 3.10. Let A : E → E∗ be a Bregman inverse strongly monotone

mapping with respect to the function f(x) = ‖x‖2 for all x ∈ E and let B : E ⊸ E∗

be a maximal monotone mapping. Let {xn} be a sequence generated by u, x1 ∈ E and

(3.25)

{
yn = J−1(αnJu+ (1− αn)J(Res

B
λ ◦Aλ(xn))),

xn+1 = J−1(βnJxn + (1 − βn)Jyn) ∀n > 1,

where ResBλ := (J + λB)−1J , Aλ := J−1(J − λA) for λ > 0, {αn} ⊂ (0, 1) and

{βn} ⊂ [0, 1). Suppose that lim
n→∞

αn = 0,
∞∑

n=1
αn = ∞ and lim sup

n→∞
βn < 1.

Then {xn} converges strongly to z = Π(A+B)−10(u), where Π(A+B)−10 is the gen-

eralized projection of E onto (A+B)−10.
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4. Some applications

In this section, we apply our results to the variational inequality problem and the

equilibrium problem.

4.1. Variational inequality problem. Let E be a real reflexive Banach space.

Let f : E → (−∞,∞] be a Legendre and totally convex function. Let A : E → E∗

be a Bregman inverse strongly monotone mapping and C be a nonempty, closed and

convex subset of domA. The variational inequality problem (VIP) is to find z ∈ C

such that

〈x− z, Az〉 > 0 ∀x ∈ C.

The set of solutions of (VIP) is denoted by VI(C,A). Recall that the indicator

function of C is given by

iC(x) =

{
0 if x ∈ C,

∞ if x /∈ C.

It is known that iC is a proper, lower semicontinuous and convex function and its

subdifferential ∂iC is maximal monotone (see [40], Theorem A). Moreover, from [1],

Proposition 2.5.13, we know that

∂iC(x) =

{
NC(x) if x ∈ C,

∅ if x /∈ C,

where NC is the normal cone of C given by

NC(x) = {x∗ ∈ E∗ : 〈y − x, x∗〉 6 0 ∀ y ∈ C}.

Thus, we can define the resolvent associated with ∂iC for λ > 0 by

Resfλ∂iC (x) = (∇f + λ∂iC)
−1 ◦ ∇f(x) ∀x ∈ E.

So we have for any x ∈ E and y ∈ C,

z = Resfλ∂iC (x) ⇔ ∇f(x) ∈ ∇f(z) + λ∂iC(z)

⇔ ∇f(x) ∈ ∇f(z) + λNC(z)

⇔ ∇f(x) −∇f(z) ∈ λNC(z)

⇔
1

λ
〈y − z,∇f(x)−∇f(z)〉 6 0 ∀ y ∈ C

⇔ 〈y − z,∇f(x)−∇f(z)〉 6 0 ∀ y ∈ C

⇔ z = P f
C(x),

where P f
C is the Bregman projection from E onto C.

144



Proposition 4.1 ([37], Proposition 8). Let f : E → (−∞,∞] be a Legendre and

totally convex function. Let A : E → E∗ be a Bregman inverse strongly monotone

mapping. If C is a nonempty, closed and convex subset of domA∩ int(dom f), then

VI(C,A) = F (P f
C ◦Af

λ) for λ > 0.

Setting B = ∂iC in Theorems 3.3 and 3.7, we obtain by Proposition 4.1 the

following results.

Theorem 4.2. Let f : E → R be a strongly coercive, bounded and Fréchet dif-

ferentiable Legendre function which is totally convex on bounded subsets of E such

that ∇f is weakly sequentially continuous. Let A : E → E∗ be a Bregman inverse

strongly monotone mapping and C be a nonempty, closed and convex subset of

domA ∩ int(dom f). Let {xn} be a sequence generated by x1 ∈ C and

(4.1) xn+1 = ∇f∗(αn∇f(xn) + (1− αn)∇f(P f
C ◦Af

λ(xn))) ∀n > 1,

where {αn} ⊂ [0, 1) and λ > 0. Suppose that lim sup
n→∞

αn < 1. If VI(C,A) 6= ∅,

then {xn} converges weakly to a point in VI(C,A).

Theorem 4.3. Let f : E → R be a strongly coercive, bounded and Fréchet dif-

ferentiable Legendre function which is totally convex on bounded subsets of E. Let

A : E → E∗ be a Bregman inverse strongly monotone mapping and C be a nonempty,

closed and convex subset of domA ∩ int(dom f). Let {xn} be a sequence generated

by u, x1 ∈ C and

(4.2)

{
yn = ∇f∗(αn∇f(u) + (1− αn)∇f(P f

C ◦Af
λ(xn))),

xn+1 = ∇f∗(βn∇f(xn) + (1− βn)∇f(yn)) ∀n > 1,

where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and λ > 0. Suppose that lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞ and lim sup
n→∞

βn < 1. If VI(C,A) 6= ∅, then {xn} converges strongly

to z = P f
VI(C,A)(u).

4.2. Equilibrium problem. Let C be a nonempty, closed and convex subset of

a real reflexive Banach space E. Let G : C×C → R be a bifunction. The equilibrium

problem (EP) is to find z ∈ C such that

G(z, x) > 0 ∀x ∈ C.

The set of solutions of (EP) is denoted by EP(G). For solving this problem, let us

assume that the bifunction satisfies the following conditions:
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(A1) G(x, x) = 0 for all x ∈ C,

(A2) G is monotone, i.e., G(x, y) +G(y, x) 6 0 for all x, y ∈ C,

(A3) for each x, y, z ∈ C, lim sup
t→0

G(tz + (1− t)x, y) 6 G(x, y),

(A4) for each x ∈ C, the function y 7→ G(x, y) is convex and lower semicontinuous.

For λ > 0 and x ∈ E, we define the resolvent operator ResfλG : E ⊸ C by

ResfλG(x) =
{
z ∈ C : G(z, x) +

1

λ
〈y − z,∇f(z)−∇f(x)〉 > 0 ∀ y ∈ C

}
.

Proposition 4.4 ([37], Lemma 2). Let f : E → (−∞,∞] be a Legendre function.

Let C be a closed and convex subset of E. Let G : C×C → R be a bifunction which

satisfies conditions (A1)–(A4). Then the following hold:

(i) ResfλG is single-valued,

(ii) ResfλG is BFNE,

(iii) F (ResfλG) = EP(G),

(iv) EP(G) is closed and convex,

(v) for all x ∈ E and z ∈ F (ResfλG), we have

Df (z,Res
f
λG(x)) +Df (Res

f
λG(x), x) 6 Df (z, x).

R em a r k 4.5. If f is uniformly Fréchet differentiable and bounded on bounded

subsets of E, then from Proposition 4.4, we have F (ResfλG) = F̂ (ResfλG).

Proposition 4.6 ([42], Proposition 4.2). Let f : E → (−∞,∞] be a strongly coer-

cive and Fréchet differentiable Legendre function which is totally convex on bounded

subsets of E. Let C be a closed and convex subset of E. Let G : C × C → R be

a bifunction which satisfies conditions (A1)–(A4). Let AG : E ⊸ E∗ be defined by

AG(x) =

{
{z ∈ E∗ : G(x, y) > 〈y − x, z〉 ∀ y ∈ C} if x ∈ C,

∅ if x /∈ C.

Then the following hold:

(i) AG is maximal monotone with EP(G) = A−1
G 0,

(ii) ResfλG is the resolvent of AG, i.e., Res
f
λG = (∇f + λAG)

−1 for λ > 0.

If we set B = AG and A = 0 in Theorems 3.3 and 3.7, then by Proposition 4.6,

we obtain the following results.

Theorem 4.7. Let f : E → R be a strongly coercive, bounded and Fréchet dif-

ferentiable Legendre function which is totally convex on bounded subsets of E such

that ∇f is weakly sequentially continuous. Let C be a closed and convex subset of E.
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Let G : C × C → R be a bifunction which satisfies conditions (A1)–(A4). Let {xn}

be a sequence generated by x1 ∈ C and

(4.3) xn+1 = ∇f∗(αn∇f(xn) + (1− αn)∇f(ResfλG(xn))) ∀n > 1,

where {αn} ⊂ [0, 1) and λ > 0. Suppose that lim sup
n→∞

αn < 1. If EP(G) 6= ∅,

then {xn} converges weakly to a point in EP(G).

Theorem 4.8. Let f : E → R be a strongly coercive, bounded and Fréchet differ-

entiable Legendre function which is totally convex on bounded subsets of E. Let C

be a nonempty, closed and convex subset of E. Let G : C × C → R be a bifunc-

tion which satisfies conditions (A1)–(A4). Let {xn} be a sequence generated by

u, x1 ∈ C and

(4.4)

{
yn = ∇f∗(αn∇f(u) + (1− αn)∇f(ResfλG(xn))),

xn+1 = ∇f∗(βn∇f(xn) + (1− βn)∇f(yn)) ∀n > 1,

where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and λ > 0. Suppose that lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞ and lim sup
n→∞

βn < 1. If EP(G) 6= ∅, then {xn} converges strongly to

z = P f
EP(G)(u).

5. Numerical example

In this section, we provide a numerical example to illustrate the behaviour of our

Algorithms 3.2 and 3.6.

E x am p l e 5.1. Let E = R
3 with Euclidean norm. Let f(x) = ‖x‖2 for all

x = (y1, y2, y3)
⊤ ∈ R

3, then f satisfies Assumption 3.1 (see [10]). Thus we have

∇f(x) = 2x and ∇f∗(x∗) = 1
2x

∗. Let A : R
3 → R

3 be defined by Ax = 1
2x +

(−1, 2, 0)⊤ and B : R
3 → R

3 be defined by Bx = 4x for all x ∈ R
3. We see that

A is a Bregman inverse strongly monotone mapping and B is a maximal monotone

mapping. Indeed, let x, y ∈ R
3, then

〈Ax −Ay,∇f∗(∇f(x) −Ax)−∇f∗(∇f(y)−Ay)〉

=
〈1
2
x−

1

2
y,∇f∗

(
2x−

1

2
x− (−1, 2, 0)

)
−∇f∗

(
2y −

1

2
y − (−1, 2, 0)

)〉

=

〈
1

2
x−

1

2
y,

3

4
x−

3

4
y

〉
=

3

8
‖x− y‖2 > 0.

We also have

〈Bx−By, x− y〉 = 4‖x− y‖2 > 0

147



and ran(∇f + λB) = R
3 for all λ > 0. Then the explicit form of the resolvent

operator of B corresponding to f can be written by

ResfλB ◦Af
λ(x) = (∇f + λB)−1 ◦ ∇f ◦ (∇f∗ ◦ (∇f − λA)x)

=
4− λ

2(2 + 4λ)
x−

λ

2 + 4λ
(−1, 2, 0),

where λ > 0. It is not hard to check that (A + B)−10 = {(29 ,−
4
9 , 0)

⊤}. Let us

denote z = (29 ,−
4
9 , 0)

⊤. We choose αn = 1/(100n+ 1), βn = n/(3n+ 1) and u =

x1 = (5,−4, 9)⊤ and use the stopping rule ‖xn − z‖ < ε to terminate the iterative

processes. We consider three different cases of λ (λ = 0.01, λ = 0.05 and λ = 0.25).

The numerical results are reported in Table 1.

Algorithm 3.2 Algorithm 3.6

λ ε No. of Iter. Time (sec.) No. of Iter. Time (sec.)

10−6 558 2.805× 10−3 810 5.390× 10−3

0.01 10−9 867 4.358× 10−3 1276 8.510× 10−3

10−15 1487 7.569× 10−3 2209 1.518× 10−2

10−6 132 6.630× 10−4 193 1.276× 10−3

0.05 10−9 196 9.737× 10−4 291 1.923× 10−3

10−15 324 1.863× 10−3 486 3.246× 10−3

10−6 35 1.788× 10−4 53 3.526× 10−4

0.25 10−9 50 2.575× 10−4 77 4.884× 10−4

10−15 79 4.481× 10−4 125 8.284× 10−4

Table 1. The numerical experiments for Example 5.1 in each given λ and ε.
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Figure 1. The relation between λ ∈ (0, 1) and the average running time with ε = 10−15.
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According to the experiments, we see that the average running times are signif-

icantly dependent on the values of λ. One observes that when λ increases, less

iterations are required. We illustrate the relation between λ ∈ (0, 1) and the average

running time in Figure 1 with ε = 10−15.

6. Conclusions

In this paper, we introduced two modified forward-backward splitting algorithms

for the problem of finding zeros of the sum of a maximal monotone operator and

a Bregman inverse strongly monotone operator in reflexive Banach spaces. Our

algorithms are based on two well-known methods, which are the Mann-type iteration

and the Halpern-type iteration. We study weak and strong convergence results of

the proposed algorithms for solving such a problem. Some applications related to

the obtained results are presented. A numerical example is performed to illustrate

the convergence results.
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