Previous |  Up |  Next

Article

Keywords:
Corson compacta; point network; condition (F); almost subbase; additively $\aleph_0$-Noetherian
Summary:
We say that a collection $\mathcal{A}$ of subsets of $X$ has property $(CC)$ if there is a set $D$ and point-countable collections $\mathcal{C}$ of closed subsets of $X$ such that for any $A\in \mathcal{A}$ there is a finite subcollection $\mathcal{F}$ of $\mathcal{C}$ such that $A=D\setminus \bigcup \mathcal{F}$. Then we prove that any compact space is Corson if and only if it has a point-$\sigma$-$(CC)$ base. A characterization of Corson compacta in terms of (strong) point network is also given. This provides an answer to an open question in ``A Biased View of Topology as a Tool in Functional Analysis'' (2014) by B. Cascales and J. Orihuela and as in ``Network characterization of Gul'ko compact spaces and their relatives'' (2004) by F. Garcia, L. Oncina, J. Orihuela, which asked whether there is a network characterization of the class of Corson compacta.
References:
[1] Bandlow I.: A characterization of Corson-compact spaces. Comment. Math. Univ. Carolin. 32 (1991), no. 3, 545–550. MR 1159800
[2] Casarrubias-Segura F., García-Ferreira S., Rojas-Hernández R.: Characterizing Corson and Valdivia compact spaces. J. Math. Anal. Appl. 451 (2017), no. 2, 1154–1164. DOI 10.1016/j.jmaa.2017.02.065 | MR 3624784
[3] Cascales B., Orihuela J.: A biased view of topology as a tool in functional analysis. Recent Progress in General Topology III, Atlantis Press, Paris, 2014, pages 93–164. MR 3205483
[4] Clontz S., Gruenhage G.: Proximal compact spaces are Corson compact. Topology Appl. 173 (2014), 1–8. DOI 10.1016/j.topol.2014.05.010 | MR 3227201
[5] Collins P. J., Reed G. M., Roscoe A. W., Rudin M. E.: A lattice of conditions on topological spaces. Proc. Amer. Math. Soc. 94 (1985), no. 3, 487–496. DOI 10.1090/S0002-9939-1985-0787900-X | MR 0787900
[6] Collins P. J., Roscoe A. W.: Criteria for metrizability. Proc. Amer. Math. Soc. 90 (1984), 631–640. DOI 10.1090/S0002-9939-1984-0733418-9 | MR 0733418
[7] Dimov G.: Eberlein spaces and related spaces. C. R. Acad. Sci. Paris, Sér. I Math. 304 (1987), no. 9, 233–235. MR 0883481
[8] Dimov G. D.: An internal topological characterization of the subspaces of Eberlein compacta and related compacta - I. Topology Appl. 169 (2014), 71–86. MR 3199860
[9] Feng Z., Gartside P.: Point networks for special subspaces of $ (\mathbb{R}^{\kappa})$. Fund. Math. 235 (2016), no. 3, 227–255. DOI 10.4064/fm185-3-2016 | MR 3570211
[10] García F., Oncina L., Orihuela J.: Network characterization of Gul'ko compact spaces and their relatives. J. Math. Anal. Appl. 297 (2004), no. 2, 791–811. DOI 10.1016/j.jmaa.2004.05.013 | MR 2088694
[11] Gruenhage G.: Covering properties on $X^2 \setminus \Delta$, $W$-sets, and compact subsets of $ \Sigma$-products. Topology Appl. 17 (1984), no. 3, 287–304. DOI 10.1016/0166-8641(84)90049-X | MR 0752278
[12] Gruenhage G.: Monotonically monolithic spaces, Corson compacts, and $D$-spaces. Topology Appl. 159 (2012), no. 6, 1559–1564. DOI 10.1016/j.topol.2011.01.027 | MR 2891421
[13] Guo H., Feng Z.: Predictable network, monotonic monolithicity and $D$-spaces. Topology Appl. 254 (2019), 107–116. MR 3896174
[14] Kombarov A. P.: Functionally open and rectangular coverings of $X^2\setminus \Delta$ and some topological characteristics of Corson and Eberlein compact spaces. Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1988), no. 3, 52–54 (Russian); translation in Moscow Univ. Math. Bull. 43 (1988), no. 3, 45–47. MR 0966868
[15] Michael E., Rudin M. E.: A note on Eberlein compacts. Pacific J. Math. 72 (1977), no. 2, 487–495. DOI 10.2140/pjm.1977.72.487 | MR 0478092
[16] Nyikos P. J.: On the product of metacompact spaces. I. Connections with hereditary compactness. Amer. J. Math. 100 (1978), no. 4, 829–835. DOI 10.2307/2373911 | MR 0509075
Partner of
EuDML logo