Article
Keywords:
non-normality point; butterfly point; Kunen point; super Kunen point
Summary:
We show that $\omega ^{*}\setminus \{p\}$ is not normal, if $p$ is a limit point of some countable subset of $\omega ^{*}$, consisting of points of character $\omega _{1}$. Moreover, such a point $p$ is a Kunen point and a super Kunen point.
References:
[2] Błaszczyk A., Szymański A.: Some non-normal subspaces of the Čech–Stone compactification of a discrete space. Proc. Eighth Winter School on Abstract Analysis, Czechoslovak Academy of Sciences, Praha, 1980, pages 35–38.
[5] Gryzlov A. A.:
On the question of hereditary normality of the space $\beta \omega \setminus \omega$. Topology and Set Theory, Udmurt. Gos. Univ., Izhevsk, 1982, 61–64 (Russian).
MR 0760274
[6] Rajagopalan M.:
$\beta N-N-\{p\}$ is not normal. J. Indian Math. Soc. (N.S.) 36 (1972), 173–176.
MR 0321012
[7] Szymanski A.:
Retracts and non-normality points. Topology Proc. 40 (2012), 195–201.
MR 2832067
[8] Warren N. M.:
Properties of Stone–Čech compactifications of discrete spaces. Proc. Amer. Math. Soc. 33 (1972), 599–606.
MR 0292035