Previous |  Up |  Next

Article

Keywords:
Ilmanen's lemma; $ C^{1,\omega} $ function; semiconvex function with general modulus
Summary:
The author proved in 2018 that if $ G $ is an open subset of a Hilbert space, $ f_1,f_2\colon G\to\mathbb{R} $ continuous functions and $ \omega $ a nontrivial modulus such that $ f_1\leq f_2 $, $ f_1 $ is locally semiconvex with modulus $ \omega $ and $ f_2 $ is locally semiconcave with modulus $ \omega $, then there exists $ f\in C^{1,\omega}_{\text{loc}}(G) $ such that $ f_1\leq f\leq f_2 $. This is a generalization of Ilmanen's lemma (which deals with linear modulus and functions on an open subset of $ \mathbb{R}^{n} $). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to $ L^p $ spaces, $ p\in[2,\infty) $. We also prove a ``global" version of Ilmanen's lemma (where a $ C^{1,\omega} $ function is inserted between functions on an interval $ I\subset\mathbb{R} $).
References:
[1] Benyamini Y., Lindenstrauss J.: Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, 48, American Mathematical Society, Providence, 2000. MR 1727673 | Zbl 0946.46002
[2] Bernard P.: Lasry–Lions regularization and a lemma of Ilmanen. Rend. Sem. Mat. Univ. Padova 124 (2010), 221–229. DOI 10.4171/RSMUP/124-15 | MR 2752687
[3] Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. MR 2041617
[4] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific & Technical, Harlow, John Wiley & Sons, New York, 1993. MR 1211634 | Zbl 0782.46019
[5] Duda J., Zajíček L.: Semiconvex functions: representations as suprema of smooth functions and extensions. J. Convex Anal. 16 (2009), no. 1, 239–260. MR 2531202
[6] Duda J., Zajíček L.: Smallness of singular sets of semiconvex functions in separable Banach spaces. J. Convex Anal. 20 (2013), no, 2, 573–598. MR 3098482
[7] Hájek P., Johanis M.: Smooth Analysis in Banach Spaces. De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014. MR 3244144 | Zbl 1329.00102
[8] Ilmanen T.: The level-set flow on a manifold. Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, 1990, Proc. Sympos. Pure Math. 54 (1993), Part 1, 193–204. MR 1216585
[9] Kryštof V.: Generalized versions of Ilmanen lemma: insertion of $ C^{1,\omega} $ or $ C^{1,\omega}_{ loc} $ functions. Comment. Math. Univ. Carolin. 59 (2018), no. 2, 223–231. MR 3815687
Partner of
EuDML logo