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Further generalized versions of Ilmanen’s

lemma on insertion of C1,ω or C
1,ω
loc functions

Václav Kryštof

Abstract. The author proved in 2018 that if G is an open subset of a Hilbert
space, f1, f2 : G → R continuous functions and ω a nontrivial modulus such that
f1 ≤ f2, f1 is locally semiconvex with modulus ω and f2 is locally semiconcave

with modulus ω, then there exists f ∈ C
1,ω

loc
(G) such that f1 ≤ f ≤ f2. This

is a generalization of Ilmanen’s lemma (which deals with linear modulus and
functions on an open subset of Rn). Here we extend the mentioned result from
Hilbert spaces to some superreflexive spaces, in particular to Lp spaces, p ∈

[2,∞). We also prove a “global” version of Ilmanen’s lemma (where a C1,ω

function is inserted between functions on an interval I ⊂ R).

Keywords: Ilmanen’s lemma; C1,ω function; semiconvex function with general
modulus

Classification: 26B25

1. Introduction

Let A ⊂ R
n be a convex set. We say that f : A → R is classically semiconvex

if there exists C > 0 such that the function x 7→ f(x) + C|x|2, x ∈ A, is convex.

We say that f : A→ R is classically semiconcave if −f is classically semiconvex.

T. Ilmanen proved the following result [8, proof of 4F from 4G, page 199]:

Ilmanen’s lemma. Let G ⊂ R
n be an open set and f1, f2 : G → R. Suppose

that f1 ≤ f2, f1 is locally classically semiconvex and f2 is locally classically

semiconcave. Then there exists f ∈ C1,1
loc (G) such that f1 ≤ f ≤ f2.

We will work with semiconvex (or semiconcave) functions with general modu-

lus, see Definition 2.2 below and cf. [3, Definition 2.1.1]. Note that the classically

semiconvex functions coincide with semiconvex functions with modulus ω(t) = Ct

where C > 0, cf. [3, Proposition 1.1.3].

The following generalization of Ilmanen’s lemma was proved in [9]:
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Theorem ([9, Theorem 4.5]). Let X be a Hilbert space, G ⊂ X an open set,

f1, f2 : G→ R continuous functions and ω a modulus. Suppose that

lim inf
t→0+

ω(t)

t
> 0, f1 ≤ f2

and that for every x ∈ G there exist C, r > 0 such that B(x, r) ⊂ G, f1 ↾B(x,r)

is semiconvex with modulus Cω and f2 ↾B(x,r) is semiconcave with modulus Cω.

Then there exists f ∈ C1,ω
loc (G) such that f1 ≤ f ≤ f2.

We generalize this result to some superreflexive spaces, see Theorem 3.9 below,

in particular to Lebesgue spaces Lp, p ∈ (2,∞), see Corollary 3.10 below.

In [9], we also proved a result ([9, Corollary 3.2]) on insertion of C1,ω functions

which generalizes [2, Theorem 2] (which works with linear modulus and functions

on Hilbert space). [9, Corollary 3.2] can be reformulated as follows:

Theorem. Let X be a normed linear space, f1, f2 : X → R continuous functions

and ω a modulus. Suppose that f1 is semiconvex with modulus ω, f2 is semi-

concave with modulus ω and f1 ≤ f2. Then there exists f ∈ C1,ω(X) such that

f1 ≤ f ≤ f2.

In the last section we prove Corollary 4.4 which is a precise analogue of the

previous theorem for functions on an interval I ⊂ R.

2. Preliminaries

Throughout this article, all normed linear spaces (Banach spaces, respectively)

are real. By B(x, r) we denote the open ball with center x and radius r. If P

is a metric space, then we denote by C(P ) the set of all continuous functions

f : P → R.

Notation 2.1. We denote by M the set of all ω : [0,∞) → [0,∞) which are

non-decreasing and satisfy limt→0+ ω(t) = 0.

Definition 2.2. Let X be a normed linear space, A ⊂ X a convex set and

ω ∈ M.

◦ We say that f : A→ R is semiconvex with modulus ω if

f(λx+ (1− λ)y) ≤ λf(x) + (1 − λ)f(y) + λ(1− λ)‖x− y‖ω(‖x− y‖)

for every x, y ∈ A and λ ∈ [0, 1].

◦ We say that f : A→ R is semiconcave with modulus ω if −f is semicon-

vex with modulus ω.
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◦ We denote by SCω(A) the set of all f : A → R which are semiconvex

with modulus Cω for some C > 0. We denote by −SCω(A) the set of all

f : A→ R such that −f ∈ SCω(A).

Let G be an open subset of a normed linear space, α ∈ (0, 1] and ω ∈ M.

We denote by C1,ω(G) the set of all Fréchet differentiable f : G → R such that

f ′ is uniformly continuous with modulus Cω for some C > 0, and we denote by

C1,ω
loc (G) the set of all f : G → R which are locally C1,ω . If ω(t) = tα for every

t ∈ [0,∞), then we sometimes write C1,α(G) instead of C1,ω(G).

Let X be a normed linear space, G ⊂ X an open convex set and ω ∈ M. Then

(cf. [5, Corollary 3.6])

(

f ∈ C(G) ∩ SCω(G), lim inf
t→0+

ω(t)

t
= 0

)

⇒ f is convex

and, see [9, Proposition 2.5],

(1) (f ∈ C(G) ∩ SCω(G)) ⇒ f is locally Lipschitz

and (see [9, Theorem 2.6] or for the case X = R
d see [3, Proposition 2.1.2])

(2) C1,ω(G) ⊂ C(G) ∩ SCω(G) ∩ (−SCω(G)).

If, moreover, G is bounded or G = X , then, see [9, Theorem 2.6],

C1,ω(G) = C(G) ∩ SCω(G) ∩ (−SCω(G)).

Let α ∈ (0, 1]. We say that a Banach space X admits an equivalent norm with

modulus of smoothness of power type 1+α if there exists an equivalent norm |||·|||

on X and C > 0 such that

|||x + ty|||+ |||x − ty|||

2
− 1 ≤ Ct1+α, t > 0, x, y ∈ X, |||x||| = |||y||| = 1.

For a Banach space X we have the following (Pisier’s) result, see [1, Theo-

rem A.6]:

(3)
X is superreflexive if and only if X admits an equivalent norm

with modulus of smoothness of power type 1 + α for some α ∈ (0, 1].

3. Insertion of a C1,ω
loc function

In this section we prove a generalization of Ilmanen’s lemma which improves

[9, Theorem 4.5] (which works with functions on Hilbert spaces) to some su-

perreflexive spaces, in particular to Lp spaces, p ∈ [2,∞) (see Theorem 3.9 or
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Corollary 3.10 below). We use essentially the same methods as in [9]. However,

besides these methods, we need Proposition 3.7 below. This result is implicitly

contained in [7] for G = X . We reduce the case of an arbitrary G to the case

G = X using the notion of a partition ring and [7, Lemma 7.49], see the proof of

Lemma 3.6 below. So, we need to recall some definitions from [7].

Definition 3.1 (cf. [7, page 411]). Let P be a metric space. We say that a family

{Aγ}γ∈Γ of subsets of P is

◦ locally finite if for every x ∈ P there exists a neighbourhood U of x such

that {γ ∈ Γ: Aγ ∩ U 6= ∅} is finite;

◦ uniformly discrete if there exists δ > 0 such that dist(Aγ1
, Aγ2

) ≥ δ

whenever γ1, γ2 ∈ Γ, γ1 6= γ2;

◦ σ-uniformly discrete if there are Γn ⊂ Γ, n ∈ N, such that Γ =
⋃

n∈N
Γn

and {Aγ}γ∈Γn
is uniformly discrete for every n ∈ N.

Remark 3.2. If A is a (nonindexed) family of subsets of a metric space, then we

can regard it as an (indexed) family {A}A∈A. Hence the previous definition can

be applied to A too.

Notation 3.3. Let P be a metric space and f : P → R. Then we set suppo f :=

{x ∈ P : f(x) 6= 0}.

Definition 3.4 (see [7, page 411]). Let P be a metric space and S ⊂ C(P ). We

say that P admits locally finite and σ-uniformly discrete S-partitions of unity if

for every open cover U of P there exists a system {ψγ}γ∈Γ of functions from S

such that the following hold:

◦ {suppo ψγ}γ∈Γ is locally finite and σ-uniformly discrete.

◦ For every γ ∈ Γ there exists U ∈ U such that suppo ψγ ⊂ U .

◦ 0 ≤ ψγ ≤ 1 for every γ ∈ Γ, and
∑

γ∈Γ ψγ(x) = 1 for every x ∈ P .

Definition 3.5 (see [7, page 411]). Let P be a metric space and S ⊂ C(P ) a ring

of functions. We say that S is a partition ring on P if the following hold:

◦ For every S0 ⊂ S such that suppo f is bounded for every f ∈ S0 and

{suppo f : f ∈ S0} is uniformly discrete, there exists g ∈ S such that

suppo g =
⋃

f∈S0

suppo f.

◦ For every f ∈ S and every open U1, U2 ⊂ P such that dist(U1, U2) > 0

and suppo f = U1 ∪ U2, we have χU1
· f ∈ S.

◦ For every f ∈ S bounded below and every ε > 0 there exists g ∈ S such

that 0 ≤ g ≤ 1, f−1((−∞, ε]) ⊂ g−1({0}) and f−1([2ε,∞)) ⊂ g−1({1}).
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Lemma 3.6. Let P be a metric space and S a partition ring on P . Then the

following are equivalent:

(i) Space P admits locally finite and σ-uniformly discrete S-partitions of

unity.

(ii) Every open G ⊂ P admits locally finite and σ-uniformly discrete SG-

partitions of unity (where SG := {f ↾G : f ∈ S, suppo f ⊂ G}).

(iii) {suppo f : f ∈ S} contains a σ-uniformly discrete basis for the topology

of P .

Proof: (ii) trivially implies (i) and (i) is equivalent to (iii) by [7, Lemma 7.49].

(iii) ⇒ (ii): Let G ⊂ P be an open set. It follows easily from the definitions

that SG is a partition ring on G. By the assumption, there exists S∗ ⊂ S such

that {suppo f : f ∈ S∗} is a σ-uniformly discrete basis for the topology of P . Set

S∗
G := {f ↾G : f ∈ S∗, suppo f ⊂ G}. Then S∗

G ⊂ SG and {suppo f : f ∈ S∗
G}

is a σ-uniformly discrete basis for the topology of G. Thus {suppo f : f ∈ SG}

contains a σ-uniformly discrete basis for the topology of G. If we apply the

implication (iii) ⇒ (i) to the case P := G and S := SG, we obtain that G admits

locally finite and σ-uniformly discrete SG-partitions of unity. �

Proposition 3.7. Let X be a Banach space, G ⊂ X an open set and α ∈ (0, 1].

Suppose that X admits an equivalent norm with modulus of smoothness of power

type 1 + α. Then G admits locally finite and σ-uniformly discrete C1,α(G)-

partitions of unity.

Proof: Firstly, X is superreflexive, see (3). Further, X admits an equivalent

norm which is uniformly rotund and has modulus of smoothness of power type

1 + α (this fact is contained in the proof of [4, Proposition IV.5.2], see also

the note after that proposition). Note also that the Fréchet derivative of such

a norm is α-Hölder on the corresponding unit sphere, see [4, Proposition IV.5.1] or

[5, Lemma 2.6] for more details. So, all the statements of [7, Theorem 7.56] and

[7, Proposition 7.58] holds with our α (for this, see the beginning of the proof of

[7, Proposition 7.58]).

Denote by S the set of all f ∈ C1,α(X) which are bounded and have bounded

derivative, and set SG := {f ↾G : f ∈ S, suppo f ⊂ G}. It is proved in the proof

of [7, Theorem 7.56] that S is a partition ring on X and that the condition (ii)

of [7, Lemma 7.49] holds. Thus, by [7, Lemma 7.49], X admits locally finite and

σ-uniformly discrete S-partitions of unity. Hence G admits locally finite and σ-

uniformly discrete SG-partitions of unity by Lemma 3.6. Now the assertion of the

proposition follows. �

Note that the converse of the previous proposition also holds as is shown in

the following remark:
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Remark 3.8. Let X be a Banach space and α ∈ (0, 1]. Suppose that some

nonempty open subset G of X admits locally finite and σ-uniformly discrete

C1,α(G)-partitions of unity. Then we can easily find f ∈ C1,α(X) such that

suppo f is nonempty and bounded (i.e. X admits a C1,α(X)-smooth bump).

Hence X admits an equivalent norm with modulus of smoothness of power type

1 + α by [7, Theorem 5.50].

Theorem 3.9. Let X be a Banach space, G ⊂ X an open set, f1, f2 : G → R,

ω ∈ M and α ∈ (0, 1]. Suppose that the following hold:

(a) Space X admits an equivalent norm with modulus of smoothness of power

type 1 + α.

(b) lim inft→0+ ω(t)/t
α > 0.

(c) Functions f1 and f2 are continuous, f1 ≤ f2 and for every x ∈ G there ex-

ist C, r > 0 such that B(x, r) ⊂ G, f1 ↾B(x,r) is semiconvex with modulus

Cω and f2 ↾B(x,r) is semiconcave with modulus Cω.

Then there exists f ∈ C1,ω
loc (G) such that f1 ≤ f ≤ f2.

Proof: By (1) and condition (c), for every x ∈ G we can find rx ∈ (0, 1) such

that B(x, 2rx) ⊂ G,

f1 ↾B(x,2rx)∈ SCω(B(x, 2rx)), f2 ↾B(x,2rx)∈ −SCω(B(x, 2rx))

and f1 and f2 are Lipschitz on B(x, 2rx). Since {B(x, rx) : x ∈ G} is an open

cover of G, we can find, by Proposition 3.7, a system {ψγ}γ∈Γ of functions from

C1,α(G) such that the following hold:

◦ {suppo ψγ}γ∈Γ is locally finite;

◦ for every γ ∈ Γ there exists xγ ∈ G such that suppo ψγ ⊂ B(xγ , rxγ
);

◦ 0 ≤ ψγ ≤ 1 for every γ ∈ Γ, and
∑

γ∈Γ ψγ(x) = 1 for every x ∈ G.

We will show that for every γ ∈ Γ there exists Fγ ∈ C1,ω(G) such that

ψγ(x)f1(x) ≤ Fγ(x) ≤ ψγ(x)f2(x), x ∈ G.(4)

Let γ ∈ Γ. We put B := B(xγ , 2rxγ
) and for i ∈ {1, 2} define a function hi by

hi(x) :=

{

ψγ(x)fi(x), x ∈ G,

0, x ∈ X \G.

Then clearly f1 and f2 are Lipschitz on B, f1 ↾B∈ SCω(B), f2 ↾B∈ −SCω(B),

h1 ≤ h2 and

(5) supphi := suppo hi ⊂ B(xγ , rxγ
) ⊂ B ⊂ G, i ∈ {1, 2}.
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It follows from condition (b) that there exists c > 0 such that

(6) tα ≤ c ω(t), t ∈ [0, 4].

Noting that diamB = 4rxγ
< 4, (6) implies ψγ ↾B∈ C1,ω(B). Further, it also

follows from condition (b) that lim inft→0+ ω(t)/t > 0. Thus

h1 ↾B∈ SCω(B) and h2 ↾B∈ −SCω(B)

by [9, Lemma 4.2] (applied with A := B, g1 := ψγ ↾B and g2 := f1 ↾B or

g2 := −f2 ↾B). Hence h1 ∈ SCω(X) and h2 ∈ −SCω(X) by [9, Lemma 4.3].

Note that it follows from (5) (and the continuity of ψγ , f1 and f2) that h1 and h2
are continuous. Thus, by [9, Corollary 3.2], there exists h ∈ C1,ω(X) such that

h1 ≤ h ≤ h2. Then (4) holds with Fγ := h ↾G and we are done.

Set

f(x) :=
∑

γ∈Γ

Fγ(x), x ∈ G.

It follows from (4) that {suppo Fγ}γ∈Γ is locally finite. Hence f is well defined

and f ∈ C1,ω
loc (G). Summing (4) over γ ∈ Γ we obtain that f1 ≤ f ≤ f2. �

Corollary 3.10. Let µ be a nonnegative measure (on an arbitrary σ-algebra)

and p ∈ [2,∞). Denote by X the Lebesgue space Lp(µ). Let G ⊂ X be an open

set, f1, f2 : G→ R and ω ∈ M. Suppose further that lim inft→0+ ω(t)/t > 0 and

that condition (c) of Theorem 3.9 holds. Then there exists f ∈ C1,ω
loc (G) such

that f1 ≤ f ≤ f2.

Proof: The canonical norm on X has modulus of smoothness of power type 2

by [4, Corollary V.1.2]. The rest now follows from Theorem 3.9. �

4. Insertion of a C1,ω function on an interval I ⊂ R

The main results of this section are Theorem 4.3 and Corollary 4.4 below. We

begin with two facts concerning the set SCω(I) ∩ (−SCω(I)).

Proposition 4.1. Let I ⊂ R be an interval and ω ∈ M. Then the following

hold:

(i) SCω(I) ∩ (−SCω(I)) ⊂ C(I).

(ii) If I is open, then C1,ω(I) = SCω(I) ∩ (−SCω(I)).

Proof: (i): Let f ∈ SCω(I) ∩ (−SCω(I)). Then there exists C > 0 such that

|f(λx+ (1 − λ)y)− λf(x)− (1 − λ)f(y)| ≤ λ(1 − λ)|x− y|Cω(|x− y|)
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for every x, y ∈ I and λ ∈ [0, 1]. Thus

lim sup
λ→1−

|f(λx+ (1− λ)y)− f(x)|

= lim sup
λ→1−

|f(λx+ (1− λ)y)− λf(x) − (1− λ)f(y)|

≤ lim sup
λ→1−

λ(1− λ)|x − y|Cω(|x− y|) = 0, x, y ∈ I,

and hence limλ→1− |f(λx+ (1− λ)y)− f(x)| = 0, x, y ∈ I. This implies that f is

continuous.

(ii): C1,ω(I) ⊂ SCω(I)∩ (−SCω(I)) by (2). The reverse inclusion follows from

part (i), [6, Lemma 2.5 (i)] and [6, Proposition 2.8 (i)]. �

Lemma 4.2. Let I ⊂ R be an interval, u, v ∈ I, u < v, and ω ∈ M. Let

f : I → R be semiconvex with modulus ω and let q : [u, v] → R be convex. Suppose

that q(u) ≤ f(u), q(v) ≤ f(v), and define a function s by

s(x) :=

{

max{q(x), f(x)}, x ∈ [u, v],

f(x), x ∈ I \ [u, v].

Then s is semiconvex with modulus ω.

Proof: Let x1, x2 ∈ I, x1 < x2, and λ ∈ (0, 1). We want to show that

s(λx1 + (1 − λ)x2) ≤ λs(x1) + (1− λ)s(x2) + λ(1 − λ)(x2 − x1)ω(x2 − x1).

Set z := λx1 + (1− λ)x2. If s(z) = f(z), then (using the semiconvexity of f)

s(z) = f(z) ≤ λf(x1) + (1− λ)f(x2) + λ(1 − λ)(x2 − x1)ω(x2 − x1)

≤ λs(x1) + (1 − λ)s(x2) + λ(1 − λ)(x2 − x1)ω(x2 − x1).

So, we will further suppose that s(z) = q(z) and z ∈ (u, v). Define a function p

by

p(x) :=
x2 − x

x2 − x1
s(x1) +

x− x1
x2 − x1

s(x2)

+
x2 − x

x2 − x1

x− x1
x2 − x1

(x2 − x1)ω(x2 − x1), x ∈ [x1, x2].

Then p is concave and

p(lx1 + (1 − l)x2) = ls(x1) + (1− l)s(x2)

+ l(1− l)(x2 − x1)ω(x2 − x1), l ∈ [0, 1].
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In particular, p(xi) = s(xi), i = 1, 2. Set x1 := max{u, x1} and x2 := min{v, x2}.

Then

u ≤ x1 < z < x2 ≤ v.

If u ≤ x1, then x1 = x1 ∈ [u, v) and

q(x1) = q(x1) ≤ s(x1) = p(x1) = p(x1).

Otherwise x1 < u = x1. Then we can find l ∈ (0, 1) such that u = lx1+(1− l)x2.

Thus (using the semiconvexity of f)

q(x1) = q(u) ≤ f(u) = f(lx1 + (1− l)x2)

≤ lf(x1) + (1− l)f(x2) + l(1− l)(x2 − x1)ω(x2 − x1)

≤ ls(x1) + (1 − l)s(x2) + l(1− l)(x2 − x1)ω(x2 − x1)

= p(lx1 + (1− l)x2) = p(u) = p(x1).

Hence we have shown that q(x1) ≤ p(x1), and we can analogously show that

q(x2) ≤ p(x2). Thus (using the convexity of q and the concavity of p)

q(z) ≤
x2 − z

x2 − x1
q(x1) +

z − x1
x2 − x1

q(x2) ≤
x2 − z

x2 − x1
p(x1) +

z − x1
x2 − x1

p(x2) ≤ p(z)

and so

s(z) = q(z) ≤ p(z) = λs(x1) + (1− λ)s(x2) + λ(1− λ)(x2 − x1)ω(x2 − x1).

�

Theorem 4.3. Let I ⊂ R be an interval, f1, f2 : I → R and ω1, ω2 ∈ M. Sup-

pose that f1 is semiconvex with modulus ω1, f2 is semiconcave with modulus ω2

and f1 ≤ f2. Denote by S the set of all s : I → R which are semiconvex with

modulus ω1 and satisfy s ≤ f2. Then the function f defined by

f(x) = sup{s(x) : s ∈ S}, x ∈ I,

is semiconvex with modulus ω1, semiconcave with modulus ω2 and satisfies f1 ≤

f ≤ f2.

Proof: It is clear that f1 ≤ f ≤ f2. By [3, Proposition 2.1.5], f is semiconvex

with modulus ω1. Let u, v ∈ I, u < v. We want to show that

f(λu+ (1 − λ)v) ≥ λf(u) + (1− λ)f(v) − λ(1 − λ)(v − u)ω2(v − u), λ ∈ [0, 1].

Define a function q by

q(x) :=
v − x

v − u
f(u) +

x− u

v − u
f(v)−

v − x

v − u

x− u

v − u
(v − u)ω2(v − u), x ∈ [u, v],
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and a function s by

s(x) :=

{

max{q(x), f(x)}, x ∈ [u, v],

f(x), x ∈ I \ [u, v].

Then q is convex and

q(λu + (1− λ)v)

= λf(u) + (1 − λ)f(v)− λ(1 − λ)(v − u)ω2(v − u), λ ∈ [0, 1].

Since f2 is semiconcave with modulus ω2, we have

q(λu + (1− λ)v) = λf(u) + (1 − λ)f(v)− λ(1 − λ)(v − u)ω2(v − u)

≤ λf2(u) + (1− λ)f2(v)− λ(1− λ)(v − u)ω2(v − u)

≤ f2(λu+ (1 − λ)v), λ ∈ [0, 1].

This implies that s ≤ f2. And since q(u) = f(u) and q(v) = f(v), s is semiconvex

with modulus ω1 by Lemma 4.2. Consequently, s ∈ S and thus s ≤ f . Hence

f(λu+ (1− λ)v)

≥ s(λu+ (1 − λ)v) ≥ q(λu+ (1 − λ)v)

= λf(u) + (1 − λ)f(v)− λ(1 − λ)(v − u)ω2(v − u), λ ∈ [0, 1].

�

Corollary 4.4. Let I ⊂ R be an interval, ω ∈ M, f1 ∈ SCω(I) and f2 ∈

−SCω(I). Suppose that f1 ≤ f2. Then there exists a continuous f : I → R such

that f1 ≤ f ≤ f2 and f ↾int I∈ C1,ω(int I).

Proof: By Theorem 4.3 there exists f ∈ SCω(I) ∩ (−SCω(I)) such that f1 ≤

f ≤ f2. Then f is continuous by Proposition 4.1 (i) and f ↾int I∈ C1,ω(int I) by

Proposition 4.1 (ii). �
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