[1] Allamigeon, X., Legay, A., Fahrenberg, U., Katz, R., Gaubert, S.:
Tropical Fourier-Motzkin elimination, with an application to real-time verification. Int. J. Algebra Comput. 24 (2014), 5, 569-607.
DOI |
MR 3254715
[2] Binding, P. A., Volkmer, H.:
A generalized eigenvalue problem in the max algebra. Linear Algebra Appl. 422 (2007), 360-371.
DOI |
MR 2305125
[3] Butkovič, P.:
Max-linear Systems: Theory and Applications. Springer, 2010.
MR 2681232
[4] Butkovič, P., Jones, D.:
On special cases of the generalized max-plus eigenproblem. SIAM J. Matrix Anal. Appl. 37 (2016), 1002-1021.
DOI |
MR 3532805
[5] Cechlárová, K.:
Solutions of interval linear systems in $(max,+)$-algebra. In: Proc. 6th International Symposium on Operational Research Preddvor, Slovenia 2001, pp. 321-326.
MR 1861219
[6] Cuninghame-Green, R. A.:
Minimax algebra and applications. Advances in Imaging and Electron Physics 90 (1995), 1-121.
MR 0618736 |
Zbl 0739.90073
[7] Cuninghame-Green, R. A., Butkovič, P.: Generalised eigenproblem in max algebra. In: Proc. 9th IEEE International Workshop on Discrete Event Systems (WODES 2008), Goteborg 2008, pp.\.236-241.
[8] Gaubert, S., Sergeev, S.:
The level set method for the two-sided max-plus eigenproblem. Discrete Event Dynamic Systems 23 (2013), 105-134.
DOI |
MR 3047479
[9] Gavalec, M., Plavka, J., Ponce, D.:
Tolerance types of interval eigenvectors in max-plus algebra. Inform. Sci. 367-368 (2016), 14-27.
DOI
[10] Gavalec, M., Plavka, J., Ponce, D.:
Strong tolerance of interval eigenvectors in fuzzy algebra. Fuzzy Sets and Systems 369 (2019), 145-156.
DOI |
MR 3953380
[11] Heidergott, B., Olsder, G.-J., Woude, J. van der:
Max-plus at Work. Princeton University Press, 2005.
MR 2188299
[12] Karp, R. M.:
A characterization of the minimum cycle mean in a digraph. Discrete Math. 23 (1978), 309-311.
DOI |
MR 0523080 |
Zbl 0386.05032
[13] Myšková, H., Plavka, J.:
X-robustness of interval circulant matrices in fuzzy algebra. Linear Algebra Appl. 438 (2013), 6, 2757-2769.
DOI |
MR 3008532
[14] Myšková, H., Plavka, J.:
The robustness of interval matrices in max-plus algebra. Linear Algebra Appl. 445 (2014), 85-102.
DOI |
MR 3151265
[15] Myšková, H.:
Interval eigenvectors of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 57-61.
DOI
[16] Myšková, H.:
Weak stability of interval orbits of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 51-56.
DOI
[17] Myšková, H.:
Robustness of interval Toeplitz matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 4, 56-60.
DOI
[20] Plavka, J.:
The weak robustness of interval matrices in max-plus algebra. Discrete Appl. Math. 173 (2014) 92-101.
DOI |
MR 3202295
[21] Plavka, J., Sergeev, S.:
Reachability of eigenspaces for interval circulant matrices in max-algebra. Linear Algebra Appl. 550 (2018) 59-86.
DOI |
MR 3786247
[22] Sergeev, S.:
On the problem $Ax = \lambda Bx$ in max-algebra: every system of interval is a spectrum. Kybernetika 47 (2011), 715-721.
MR 2850458
[23] Sergeev, S.:
Extremals of the supereigenvector cone in max algebra: A combinatorial description. Linear Algebra Appl. 479 (2015), 106-117.
DOI |
MR 3345883
[24] Zimmermann, K.: Extremální algebra (in Czech). Ekon. ústav ČSAV Praha, 1976.