Previous |  Up |  Next

Article

Keywords:
fuzzy metric space; fuzzy $\mathcal {Z}$-contractive mapping; Suzuki type fuzzy $\mathcal {Z}$-contractive mappings; fixed point
Summary:
In this paper, we propose the concept of Suzuki type fuzzy $\mathcal{Z}$-contractive mappings, which is a generalization of Fuzzy $\mathcal{Z}$-contractive mappings initiated in the article [S. Shukla, D. Gopal, W. Sintunavarat, A new class of fuzzy contractive mappings and fixed point theorems, Fuzzy Sets and Systems 350 (2018)85-95]. For this type of contractions suitable conditions are framed to ensure the existence of fixed point in $G$-complete as well as $M$-complete fuzzy metric spaces. A comprehensive set of examples are furnished to demonstrate the validity of the obtained results.
References:
[1] Altun, I., Mihet, D.: Ordered Non-Archimedean fuzzy metric spaces and some fixed point results. Fixed Point Theory Appl. 2010 (2010), Article ID 782680. DOI  | MR 2595842
[2] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64 (1994), 395-399. DOI  | MR 1289545 | Zbl 0843.54014
[3] Gopal, D., Abbas, M., Imdad, M.: $\psi$-weak contractions in fuzzy metric spaces. Iranian Journal of Fuzzy Systems 8(5) (2011), 141-148. MR 2907800
[4] Gopal, D., Vetro, C.: Some new fixed point theorems in fuzzy metric spaces. Iranian J. Fuzzy Systems 11 (2014), 3, 95-107. MR 3237493
[5] Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems 27 (1988), 385-389. DOI  | MR 0956385 | Zbl 0664.54032
[6] Gregori, V., Sapena, A.: On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems 125 (2002), 245-252. DOI  | MR 1880341
[7] Gregori, V., Miñana, J-J.: Some remarks on fuzzy contractive mappings. Fuzzy Sets and Systems 251 (2014), 101-103. DOI  | MR 3226661
[8] Gregori, V., Miñana, J-J., Morillas, S.: Some questions in fuzzy metric spaces. Fuzzy Sets and Systems 204 (2012), 71-85. DOI  | MR 2950797 | Zbl 1259.54001
[9] Gregori, V., Miñana, J-J.: On fuzzy $\psi$-contractive mappings. Fuzzy Sets and Systems 300 (2016), 93-101. DOI  | MR 3226661
[10] Hadžić, O., Pap, E.: Fixed Point Theory in PM-spaces. Kluwer Academic Publishers, Dordrecht 2001. MR 1896451
[11] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces. Kybernetica 15 (1975), 326-334. DOI  | MR 0410633
[12] Miheţ, D.: Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems 159 (2008), 739-744. DOI  | MR 2410532
[13] Miheţ, D.: A class of contractions in fuzzy metric spaces. Fuzzy Sets and Systems 161 (2010), 1131-1137. DOI  | MR 2595259
[14] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier, New York 1983. MR 0790314 | Zbl 0546.60010
[15] Shukla, S., Gopal, D., Rodríguez-López, R.: Fuzzy-Prešić-Ćirić operators and applications to certain nonlinear differential equations. Math. Modell. Anal. 21 (2016), 6, 11-835. DOI  | MR 3574367
[16] Shukla, S., Gopal, D., Sintunavarat, W.: A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets and Systems 350 (2018), 85-95. DOI  | MR 3852589
[17] Suzuki, T.: A generalized Banach contraction principle which characterizes metric completeness. Proc. Amer. Math. Soc. 136 (2008), 5, 1861-1869. DOI  | MR 2373618
[18] Tirado, P.: On compactness and $G$-completeness in fuzzy metric spaces. Iranian J. Fuzzy Systems 9 (2012), 4, 151-158. MR 3113007
[19] Vasuki, R., Veeramani, P.: Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets and Systems 135 (2003), 415-417. DOI  | MR 1979610
[20] Wardowski, D.: Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets and Systems 222 (2013), 108-114. DOI  | MR 3053895
[21] Zheng, D., Wang, P.: Meir-Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems 370 (2019), 120-128. DOI  | MR 3960172
Partner of
EuDML logo