Previous |  Up |  Next

Article

Keywords:
Vector bundle; spherically symmetric metric; complete Riemannian metric; complete metric space; Hopf-Rinow theorem.
Summary:
In this paper, we address the completeness problem of certain classes of Riemannian metrics on vector bundles. We first establish a general result on the completeness of the total space of a vector bundle when the projection is a horizontally conformal submersion with a bound condition on the dilation function, and in particular when it is a Riemannian submersion. This allows us to give completeness results for spherically symmetric metrics on vector bundle manifolds and eventually for the class of Cheeger-Gromoll and generalized Cheeger-Gromoll metrics on vector bundle manifolds. Moreover, we study the completeness of a subclass of $g$\HH natural metrics on tangent bundles and we extend the results to the case of unit tangent sphere bundles. Our proofs are mainly based on techniques of metric topology and on the Hopf-Rinow theorem.
References:
[1] Abbassi, M.T.K.: $g$-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds. Note. Mat, 28, 1, 2009, 6-35, MR 2640573
[2] Abbassi, M.T.K.: Métriques Naturelles Riemanniennes sur le Fibré tangent ¸ une variété Riemannienne. Editions Universitaires Européénnes, Saarbrücken, Germany, 2012,
[3] Abbassi, M.T.K, Calvaruso, G., Perrone, D.: Harmonic Sections of Tangent Bundles Equipped with Riemannian g-Natural Metrics. Quart. J. Math, 62, 2011, 259-288, DOI 10.1093/qmath/hap040 | MR 2805204
[4] Abbassi, M.T.K., Sarih, M.: On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds. Diff. Geom. Appl, 22, 2005, 19-47, MR 2106375 | Zbl 1068.53016
[5] Albuquerque, R.: On Vector Bundle Manifolds With Spherically Symmetric Metrics. Ann. Global Anal. Geom., 51, 2017, 129-154, DOI 10.1007/s10455-016-9528-y | MR 3612951
[6] Benyounes, M., Loubeau, E., Wood, C.M.: The geometry of generalized Cheeger-Gromoll metrics. Tokyo J. Math, 32, 2, 2009, 287-312, DOI 10.3836/tjm/1264170234 | MR 2589947
[7] Benyounes, M., Loubeau, E., Wood, C.M.: Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type. Differential Geometry and its Applications, 25, 2007, 322-334, DOI 10.1016/j.difgeo.2006.11.010 | MR 2330461
[8] Besse, A.L.: Einstein Manifolds. 1987, Springer-Verlag, Berlin, Heidelberg, Zbl 0613.53001
[9] Escobales, R.H., JR.: Riemannian submersions with totally geodesic fibers. J. Diff. Geometry, 10, 1975, 253-276,
[10] Fuglede, B.: Harmonic Morphisms between Riemannian Manifolds. Ann. Inst. Fourier, 28, 1978, 107-144, DOI 10.5802/aif.691
[11] Gudmundsson, S.: On the Geometry of Harmonic Morphisms. Math. Proc. Camb. Phil. Soc, 108, 1990, 461-466, DOI 10.1017/S0305004100069358
[12] Gudmundsson, S.: The Geometry of Harmonic Morphisms. 1992, Doctoral thesis,
[13] Hermann, R.: A sufficient condition that a map of Riemannian manifolds be a fiber bundle. Proc. Amer. Math. Soc, 11, 1960, 236-242, DOI 10.1090/S0002-9939-1960-0112151-4
[14] Ishihara, T.: A Mapping of Riemannian Manifolds which preserves Harmonic Functions. J. Math. Kyoto Univ, 19, 1979, 215-229,
[15] Kobayashi, S., Nomizu, K.: Foundations of differential geometry Vol.1. 1963, Interscince Publishers, New York and London,
[16] Kowalski, O.: Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold. J. Reine Angew. Math, 250, 1971, 124-129,
[17] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles-a classification. Bull. Tokyo Gakugei Univ, 40, 4, 1988, 1-29,
[18] Kolár, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. 1993, Springer-Verlag, Berlin, Heidelberg,
[19] Krupka, D., Janyska, J.: Lectures on differential invariants. 1990, Univ. of Brno,
[20] Musso, E., Tricerri, F.: Riemannian metrics on tangent bundles. Ann. Math. Pura Appl, 150, 4, 1988, 1-20, DOI 10.1007/BF01761461 | Zbl 0658.53045
[21] Nagano, T.: On fibred Riemannian manifolds. Sci. Papers College Gen. Ed. Univ. Tokyo, 10, 1960, 17-27,
[22] O'Neill, B.: The Fundamental Equation of a Submersion. Mich. Math. J, 13, 1966, 459-469, DOI 10.1307/mmj/1028999604
[23] O'Neill, B.: Submersions and geodesics. Duke Math. J, 34, 1967, 459-469,
[24] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds I. J. Tohôku Math, 10, 1958, 338-354,
Partner of
EuDML logo