[1] Abbassi, M.T.K.:
$g$-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds. Note. Mat, 28, 1, 2009, 6-35,
MR 2640573
[2] Abbassi, M.T.K.: Métriques Naturelles Riemanniennes sur le Fibré tangent ¸ une variété Riemannienne. Editions Universitaires Européénnes, Saarbrücken, Germany, 2012,
[3] Abbassi, M.T.K, Calvaruso, G., Perrone, D.:
Harmonic Sections of Tangent Bundles Equipped with Riemannian g-Natural Metrics. Quart. J. Math, 62, 2011, 259-288,
DOI 10.1093/qmath/hap040 |
MR 2805204
[4] Abbassi, M.T.K., Sarih, M.:
On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds. Diff. Geom. Appl, 22, 2005, 19-47,
MR 2106375 |
Zbl 1068.53016
[6] Benyounes, M., Loubeau, E., Wood, C.M.:
The geometry of generalized Cheeger-Gromoll metrics. Tokyo J. Math, 32, 2, 2009, 287-312,
DOI 10.3836/tjm/1264170234 |
MR 2589947
[7] Benyounes, M., Loubeau, E., Wood, C.M.:
Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type. Differential Geometry and its Applications, 25, 2007, 322-334,
DOI 10.1016/j.difgeo.2006.11.010 |
MR 2330461
[8] Besse, A.L.:
Einstein Manifolds. 1987, Springer-Verlag, Berlin, Heidelberg,
Zbl 0613.53001
[9] Escobales, R.H., JR.: Riemannian submersions with totally geodesic fibers. J. Diff. Geometry, 10, 1975, 253-276,
[10] Fuglede, B.:
Harmonic Morphisms between Riemannian Manifolds. Ann. Inst. Fourier, 28, 1978, 107-144,
DOI 10.5802/aif.691
[12] Gudmundsson, S.: The Geometry of Harmonic Morphisms. 1992, Doctoral thesis,
[14] Ishihara, T.: A Mapping of Riemannian Manifolds which preserves Harmonic Functions. J. Math. Kyoto Univ, 19, 1979, 215-229,
[15] Kobayashi, S., Nomizu, K.: Foundations of differential geometry Vol.1. 1963, Interscince Publishers, New York and London,
[16] Kowalski, O.: Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold. J. Reine Angew. Math, 250, 1971, 124-129,
[17] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles-a classification. Bull. Tokyo Gakugei Univ, 40, 4, 1988, 1-29,
[18] Kolár, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. 1993, Springer-Verlag, Berlin, Heidelberg,
[19] Krupka, D., Janyska, J.: Lectures on differential invariants. 1990, Univ. of Brno,
[21] Nagano, T.: On fibred Riemannian manifolds. Sci. Papers College Gen. Ed. Univ. Tokyo, 10, 1960, 17-27,
[23] O'Neill, B.: Submersions and geodesics. Duke Math. J, 34, 1967, 459-469,
[24] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds I. J. Tohôku Math, 10, 1958, 338-354,