Previous |  Up |  Next

Article

Keywords:
Integral transform; Bessel function; Whittaker function; Confluent hypergeometric function; Lorentz-Gaussian beams.
Summary:
The aim of the present note is to derive an integral transform $$I=\int _{0}^{\infty } x^{s+1} e^{-\beta x^{2}+\gamma x} M_{k, \nu }\left (2 \zeta x^{2}\right )J_{\mu }(\chi x) dx,$$ involving the product of the Whittaker function $M_{k, \nu }$ and the Bessel function of the first kind $J_{\mu }$ of order $\mu $. As a by-product, we also derive certain new integral transforms as particular cases for some special values of the parameters $k$ and $\nu $ of the Whittaker function. Eventually, we show the application of the integral in the propagation of hollow higher-order circular Lorentz-cosh-Gaussian beams through an ABCD optical system (see, for details \cite {Xu2019}, \cite {Collins1970}).
References:
[1] Andrews, G.E., Askey, R., Roy, R.: Special Functions. 1999, Encyclopedia of Mathematics and its Applications 71. Cambridge University Press, Cambridge,
[2] Chen, R., An, C.: On the evaluation of infinite integrals involving Bessel functions. App. Math. Comput., 235, 2014, 212-220, DOI 10.1016/j.amc.2014.03.016 | MR 3194597
[3] Collins, S.A.: Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am., 60, 9, 1970, 1168-1177, DOI 10.1364/JOSA.60.001168
[4] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products (5th edition). 1994, Academic Press Inc., Boston,
[5] Khan, N.U., Kashmin, T.: On infinite series of three variables involving Whittaker and Bessel functions. Palest. J. Math., 5, 1, 2015, 185-190, MR 3413773
[6] Khan, N.U., Usman, T., Ghayasuddin, M.: A note on integral transforms associated with Humbert's confluent hypergeometric function. Electron. J. Math. Anal. Appl., 4, 2, 2016, 259-265,
[7] Rainville, E.D.: Intermediate Differential Equations. 1964, Macmillan,
[8] Rainville, E.D.: Special Functions. 1960, Macmillan Company, New York. Reprinted by Chelsea Publishing Company, Bronx, New York (1971),
[9] Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions. 1984, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press, New York, Zbl 0535.33001
[10] Watson, G.N.: A Treatise on the Theory of Bessel Functions (second edition). 1944, Cambridge University Press, Cambridge,
[11] Whittaker, E.T.: An expression of certain known functions as generalized hypergeometric functions. Bull. Amer. Math. Soc., 10, 3, 1903, 125\IL2\textendash 134, DOI 10.1090/S0002-9904-1903-01077-5
[12] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis (reprint of the fourth (1927) edition). 1996, Cambridge Mathematical Library, Cambridge University Press, Cambridge,
[13] Xu, Y., Zhou, G.: Circular Lorentz-Gauss beams. J. Opt. Soc. Am. A., 36, 2, 2019, 179-185, DOI 10.1364/JOSAA.36.000179
Partner of
EuDML logo