Previous |  Up |  Next

Article

Keywords:
G-doubly stochastic matrix; gt-majorization; (strong) linear preserver; tridiagonal matrices.
Summary:
For $X,Y\in \textbf {M}_{n,m}$, it is said that $X$ is \emph {g-tridiagonal} majorized by $Y$ (and it is denoted by $X\prec _{gt}Y$) if there exists a tridiagonal g-doubly stochastic matrix $A$ such that $X=AY$. In this paper, the linear preservers and strong linear preservers of $\prec _{gt}$ are characterized on $\textbf {M}_{n,m}$.
References:
[1] Armandnejad, A., Gashool, Z.: Strong linear preservers of g-tridiagonal majorization on $\mathbb R^n$. Electronic Journal of Linear Algebra, 123, 2012, 115-121, MR 2889575
[2] Armandnejad, A., Mohtashami, S., Jamshidi, M.: On linear preservers of g-tridiagonal majorization on $\mathbb {R}^{n}$. Linear Algebra and its Applications, 459, 2014, 145-153, DOI 10.1016/j.laa.2014.06.050 | MR 3247220
[3] Beasley, L.B., Lee, S.-G., Lee, Y.-H.: A characterization of strong preservers of matrix majorization. Linear Algebra and its Applications, 367, 2003, 341-346, DOI 10.1016/S0024-3795(02)00657-2 | MR 1976930
[4] Bahatia, R.: Matrix Analysis. 1997, Springer-Verlag, New York,
[5] Brualdi, R.A., Dahl, G.: An extension of the polytope of doubly stochastic matrices. Linear and Multilinear Algebra, 6, 3, 2013, 393-408, DOI 10.1080/03081087.2012.689980 | MR 3003432
[6] Chiang, H., Li, C.K.: Generalized doubly stochastic matrices and linear preservers. Linear and Multilinear Algebra, 53, 2005, 1-11, DOI 10.1080/03081080410001681599 | MR 2114138
[7] Hasani, A.M., Radjabalipour, M.: The structure of linear operators strongly preserving majorizations of matrices. Electronic Journal of Linear Algebra, 15, 2006, 260-268, DOI 10.13001/1081-3810.1236 | MR 2255479
[8] Hasani, A.M., Radjabalipour, M.: On linear preservers of (right) matrix majorization. Linear Algebra and its Applications, 423, 2007, 255-261, DOI 10.1016/j.laa.2006.12.016 | MR 2312405
[9] Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of majorization and its applications. 2011, Springer, New York, MR 2759813
Partner of
EuDML logo