[3] Agricola, I., Becker-Bender, J., Kim, H.:
Twistorial eigenvalue estimates for generalized Dirac operators with torsion. Adv. Math., 243, 2013, 296-329,
DOI 10.1016/j.aim.2013.05.001 |
MR 3062748
[4] Ammann, B., Bär, C.:
The Einstein-Hilbert action as a spectral action. Noncommutative Geometry and the Standard Model of Elementary Particle Physics, 2002, 75-108,
MR 1998531
[5] Besse, A.L.:
Einstein manifolds. 1987, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag,
Zbl 0613.53001
[6] Chrysikos, I.:
Invariant connections with skew-torsion and $\nabla $-Einstein manifolds. J. Lie Theory, 26, 2016, 11-48,
MR 3384980
[9] Chrysikos, I., Gustad, C. O'Cadiz, Winther, H.:
Invariant connections and $\nabla $-Einstein structures on isotropy irreducible spaces. J. Geom. Phys., 138, 2019, 257-284,
DOI 10.1016/j.geomphys.2018.10.012 |
MR 3945042
[12] Friedrich, Th., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math., 6, 1962, 64-94,
[14] Kühnel, W.:
Differential Geometry, Curves--Surfaces--Manifolds. 2002, Amer. Math. Soc. Student Math. Library,
MR 1882174
[15] Ville, M.: Sur le volume des variétés riemanniennes pincées. Bulletin de la S. M. F., 115, 1987, 127-139,