Previous |  Up |  Next

Article

Keywords:
Multiplicative Lie derivation; multiplicative Lie triple derivation; standard operator algebra.
Summary:
Let $\mathcal {X}$ be a Banach space of dimension $n>1$ and $\mathfrak {A} \subset \mathcal {B}(\mathcal {X})$ be a standard operator algebra. In the present paper it is shown that if a mapping $d:\mathfrak {A} \rightarrow \mathfrak {A}$ (not necessarily linear) satisfies $$d([[U,V],W])=[[d(U),V],W]+[[U,d(V)],W]+[[U,V],d(W)]$$ for all $U, V, W \in \mathfrak {A}$, then $d=\psi +\tau $, where $\psi $ is an additive derivation of $\mathfrak {A}$ and $\tau : \mathfrak {A} \rightarrow \mathbb {F}I$ vanishes at second commutator $[[U,V],W]$ for all $U, V, W \in \mathfrak {A}$. Moreover, if $d$ is linear and satisfies the above relation, then there exists an operator $S\in \mathfrak {A}$ and a linear mapping $\tau $ from $\mathfrak {A}$ into $\mathbb {F}I$ satisfying $\tau ([[U,V],W])=0$ for all $U, V, W \in \mathfrak {A}$, such that $d(U)=SU-US+\tau (U)$ for all $U\in \mathfrak {A}$.
References:
[1] Cheung, W.: Lie derivations of triangular algebras. Linear Multilinear Algebra, 51, 2003, 299-310, DOI 10.1080/0308108031000096993 | MR 1995661
[2] Chen, L., Zhang, J.H.: Nonlinear Lie derivations on upper triangular matrices. Linear Multilinear Algebra, 56, 6, 2008, 725-730, DOI 10.1080/03081080701688119 | MR 2457697
[3] Daif, M.N.: When is a multiplicative derivation additive?. International Journal of Mathematics and Mathematical Sciences, 14, 3, 1991, 615-618, DOI 10.1155/S0161171291000844
[4] Halmos, P.: A Hilbert space Problem Book, 2nd ed. 1982, Springer-Verlag, New York,
[5] Jing, W., Lu, F.: Lie derivable mappings on prime rings. Linear Multilinear Algebra, 60, 2012, 167-180, DOI 10.1080/03081087.2011.576343 | MR 2876765
[6] Ji, P., Zhao, R. Liu and Y.: Nonlinear Lie triple derivations of triangular algebras. Linear Multilinear Algebra, 60, 2012, 1155-1164, DOI 10.1080/03081087.2011.652109 | MR 2983757
[7] Ji, P.S., Wang, L.: Lie triple derivations of TUHF algebras. Linear Algebra Appl., 403, 2005, 399-408, DOI 10.1016/j.laa.2005.02.004 | MR 2140293 | Zbl 1114.46048
[8] Lu, F.: Additivity of Jordan maps on standard operator algebras. Linear Algebra Appl., 357, 2002, 123-131, DOI 10.1016/S0024-3795(02)00367-1 | MR 1935229
[9] Lu, F.: Lie triple derivations on nest algebras. Math. Nachr., 280, 8, 2007, 882-887, MR 2326061 | Zbl 1124.47054
[10] Lu, F., Jing, W.: Characterizations of Lie derivations of $\mathcal{B}(\mathcal{X})$. Linear Algebra Appl., 432, 1, 2010, 89-99, DOI 10.1016/j.laa.2009.07.026 | MR 2566460
[11] Lu, F., Liu, B.: Lie derivable maps on $\mathcal {B}(\mathcal {X})$. Journal of Mathematical Analysis and Applications, 372, 2010, 369-376, DOI 10.1016/j.jmaa.2010.07.002 | MR 2678869
[12] Mathieu, M., Villena, A. R.: The structure of Lie derivations on $C^\ast $-algebras. J. Funct. Anal., 202, 2003, 504-525, DOI 10.1016/S0022-1236(03)00077-6 | MR 1990536
[13] III, W.S. Martindale: When are multiplicative mappings additive?. Proc. Amer. Math. Soc., 21, 1969, 695-698, DOI 10.1090/S0002-9939-1969-0240129-7
[14] Mires, C.R.: Lie derivations of von Neumann algebras. Duke Math. J., 40, 1973, 403-409,
[15] Mires, C.R.: Lie triple derivations of von Neumann algebras. Proc. Am. Math. Soc., 71, 1978, 57-61, DOI 10.1090/S0002-9939-1978-0487480-9
[16] Šemrl, P.: Additive derivations of some operator algebras. llinois J. Math., 35, 1991, 234-240,
[17] Villena, A.R.: Lie derivations on Banach algebras. J. Algebra, 226, 2000, 390-409, DOI 10.1006/jabr.1999.8193
[18] Yu, W., Zhang, J.: Nonlinear Lie derivations of triangular algebras. Linear Algebra Appl., 432, 11, 2010, 2953-2960, DOI 10.1016/j.laa.2009.12.042 | MR 2639258
[19] Zhang, J.H., Wu, B.W., Cao, H.X.: Lie triple derivations of nest algebras. Linear Algebra Appl., 416, 2-3, 2006, 559-567, DOI 10.1016/j.laa.2005.12.003 | MR 2242444
[20] Zhang, F., Zhang, J.: Nonlinear Lie derivations on factor von Neumann algebras. Acta Mathematica Sinica. (Chin. Ser), 54, 5, 2011, 791-802, MR 2918674
Partner of
EuDML logo