Previous |  Up |  Next

Article

Keywords:
Appell sequence; Apostol-Bernoulli polynomial; Apostol-Euler polynomial; generalized Bernoulli polynomial; primitive Dirichlet character.
Summary:
Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying $A_{n+1}^\prime (x) =(n+1)A_{n}(x)$ with $A_0(x)$ a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, Apostol\HH Euler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.
References:
[1] Agoh, T.: Shortened recurrence relations for generalized Bernoulli numbers and polynomials. Journal of Number Theory, 176, 2017, 149-173, Elsevier, DOI 10.1016/j.jnt.2016.12.014 | MR 3622124
[2] Appell, P.: Sur une classe de polynômes. Annales Scientifiques de l'École Normale Supérieure, 9, 1880, 119-144,
[3] Sun, W.Y.C. Chen,L.H.: Extended Zeilberger's algorithm for identities on Bernoulli and Euler polynomials. Journal of Number Theory, 129, 9, 2009, 2111-2132, Elsevier, DOI 10.1016/j.jnt.2009.01.026 | MR 2528056
[4] Gel'fand, I.M., Shilov, G.E.: Generalized Functions, Vol. 1: Properties and Operations. 1964, Acad. Press, New York,
[5] Gelfand, M.B.: A note on a certain relation among Bernoulli numbers. Baškir. Gos. Univ. Ucen. Zap. Vyp, 31, 1968, 215-216,
[6] Gessel, I.M.: Applications of the classical umbral calculus. Algebra Univers., 49, 4, 2003, 397-434, DOI 10.1007/s00012-003-1813-5 | MR 2022347
[7] He, Y., Zhang, W.: Some symmetric identities involving a sequence of polynomials. The Electronic Journal of Combinatorics, 17, N7, 2010, 7pp, DOI 10.37236/456 | MR 2587757
[8] Kaneko, M.: A recurrence formula for the Bernoulli numbers. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 71, 8, 1995, 192-193, The Japan Academy,
[9] Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. Journal of Mathematical Analysis and Applications, 308, 1, 2005, 290-302, Elsevier, DOI 10.1016/j.jmaa.2005.01.020 | MR 2142419
[10] Momiyama, H.: A new recurrence formula for Bernoulli numbers. Fibonacci Quarterly, 39, 3, 2001, 285-288, THE FIBONACCI ASSOCIATION, MR 1840040
[11] Prévost, M.: Padé approximation and Apostol-Bernoulli and Apostol-Euler polynomials. Journal of computational and applied mathematics, 233, 11, 2010, 3005-3017, Elsevier, DOI 10.1016/j.cam.2009.11.050 | MR 2592274
[12] Rota, G.-C.: The number of partitions of a set. The American Mathematical Monthly, 71, 5, 1964, 498-504, Taylor & Francis, DOI 10.1080/00029890.1964.11992270
[13] Stern, M.: Beiträge zur Theorie der Bernoullischen und Eulerschen Zahlen. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 26, 1880, 3-46,
[14] Sun, Z.-W.: Combinatorial identities in dual sequences. European Journal of Combinatorics, 24, 6, 2003, 709-718, Elsevier, DOI 10.1016/S0195-6698(03)00062-3 | MR 1995582
[15] Ettingshausen, A. von: Vorlesungen über die höhere Mathematik. 1827, C. Gerold, Vienna,
[16] Seidel, P.L. von: Uber eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der Münch. Akad. Math. Phys. Classe, 7, 1877, 157-187,
[17] Wu, K.-J., Sun, Z.-W., Pan, H.: Some identities for Bernoulli and Euler polynomials. Fibonacci Quarterly, 42, 4, 2004, 295-299, MR 2110081
Partner of
EuDML logo