Previous |  Up |  Next

Article

Keywords:
differential operator; density; equivariant quantization and orthosymplectic algebra
Summary:
Let $\mathcal {D}_{\lambda ,\mu } $ be the space of linear differential operators on weighted densities from $\mathcal {F}_{\lambda }$ to $\mathcal {F}_{\mu }$ as module over the orthosymplectic Lie superalgebra $\mathfrak {osp}(3|2)$, where $\mathcal {F}_{\lambda } $, $ł\in \nobreak \mathbb {C}$ is the space of tensor densities of degree $\lambda $ on the supercircle $S^{1|3}$. We prove the existence and uniqueness of projectively equivariant quantization map from the space of symbols to the space of differential operators. An explicite expression of this map is also given.\looseness -1
References:
[1] Duval, C., Lecomte, P., Ovsienko, V.: Conformally equivariant quantization: Existence and uniqueness. Ann. Inst. Fourier 49 (1999), 1999-2029. DOI 10.5802/aif.1744 | MR 1738073 | Zbl 0932.53048
[2] Grozman, P., Leites, D., Shchepochkina, I.: Invariant operators on supermanifolds and standard models. Multiple Facets of Quantization and Supersymmetry World Scientific, River Edge (2002), 508-555. DOI 10.1142/9789812777065_0031 | MR 1964915 | Zbl 1037.58003
[3] Lecomte, P. B. A.: Classification projective des espaces d'opérateurs différentiels agissant sur les densités. C. R. Acad. Sci. Paris., Sér. I, Math. 328 (1999), 287-290 French. DOI 10.1016/S0764-4442(99)80211-0 | MR 1675939 | Zbl 1017.17022
[4] Lecomte, P. B. A.: Towards projectively equivariant quantization. Prog. Theor. Phys., Suppl. 144 (2001), 125-132. DOI 10.1143/PTPS.144.125 | MR 2023850 | Zbl 1012.53069
[5] Lecomte, P. B. A., Ovsienko, V. Y.: Projectively equivariant symbol calculus. Lett. Math. Phys. 49 (1999), 173-196. DOI 10.1023/A:1007662702470 | MR 1743456 | Zbl 0989.17015
[6] Leites, D. A., Kochetkov, Y., Weintrob, A.: New invariant differential operators on supermanifolds and pseudo-(co)homology. General Topology and Applications Lecture Notes in Pure and Applied Mathematics 134. Marcel Dekker, New York (1991), 217-238. MR 1142806 | Zbl 0773.58004
[7] Leuther, T., Mathonet, P., Radoux, F.: One $osp(p+1,q+1|2r)$-equivariant quantizations. J. Geom. Phys. 62 (2012), 87-99. DOI 10.1016/j.geomphys.2011.09.003 | MR 2854196 | Zbl 1238.17016
[8] Mathonet, P., Radoux, F.: Projectively equivariant quantizations over the superspace $R^{p|q}$. Lett. Math. Phys. 98 (2011), 311-331. DOI 10.1007/s11005-011-0474-0 | MR 2852986 | Zbl 1279.53083
[9] Mellouli, N.: Projectively equivariant quantization and symbol calculus in dimension $1|2$. Available at https://arxiv.org/abs/1106.5246v1 (2011), 9 pages.
[10] Ovsienko, V. Y., Ovsienko, O. D., Chekanov, Y. V.: Classification of contact-projective structures on the supercircles. Russ. Math. Surv. 44 (1989), 212-213. DOI 10.1070/RM1989v044n03ABEH002135 | MR 1024056 | Zbl 0727.58006
[11] Shchepochkina, I.: How to realize a Lie algebra by vector fields. Theor. Math. Phys. 147 (2006), 821-838. DOI 10.1007/s11232-006-0078-5 | MR 2254724 | Zbl 1177.17015
Partner of
EuDML logo