Previous |  Up |  Next

Article

Keywords:
self-centralizing; nilpotent; TI-subgroup; subnormal; $p$-complement
Summary:
Let $G$ be a finite group. We prove that if every self-centralizing subgroup of $G$ is nilpotent or subnormal or a TI-subgroup, then every subgroup of $G$ is nilpotent or subnormal. Moreover, $G$ has either a normal Sylow $p$-subgroup or a normal $p$-complement for each prime divisor $p$ of $|G|$.
References:
[1] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80. Springer, New York (1996). DOI 10.1007/978-1-4419-8594-1 | MR 1357169 | Zbl 0836.20001
[2] Shi, J.: Finite groups in which every non-abelian subgroup is a TI-subgroup or a subnormal subgroup. J. Algebra Appl. 18 (2019), Article ID 1950159, 4 pages. DOI 10.1142/S0219498819501597 | MR 3977820 | Zbl 07096474
[3] Shi, J., Zhang, C.: Finite groups in which every subgroup is a subnormal subgroup or a TI-subgroup. Arch. Math. 101 (2013), 101-104. DOI 10.1007/s00013-013-0545-9 | MR 3089764 | Zbl 1277.20021
[4] Shi, J., Zhang, C.: A note on TI-subgroups of a finite group. Algebra Colloq. 21 (2014), 343-346. DOI 10.1142/S1005386714000297 | MR 3192353 | Zbl 1291.20018
[5] Sun, Y., Lu, J., Meng, W.: Finite groups whose non-abelian self-centralizing subgroups are TI-subgroups or subnormal subgroups. J. Algebra Appl. 20 (2021), Article ID 2150040, 5 pages. DOI 10.1142/S0219498821500407 | MR 4242212 | Zbl 07347720
Partner of
EuDML logo