[1] Allaire, G.:
Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113 (1991), 209-259.
DOI 10.1007/BF00375065 |
MR 1079189 |
Zbl 0724.76020
[3] Bakhvalov, N. S., Panasenko, G.:
Homogenisation: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. Mathematics and Its Applications: Soviet Series 36. Kluwer Academic, Dordrecht (1989).
DOI 10.1007/978-94-009-2247-1 |
MR 1112788 |
Zbl 0692.73012
[6] Cioranescu, D., Donato, P., Zaki, R.:
The periodic unfolding method in perforated domains. Port. Math. (N.S.) 63 (2006), 467-496.
MR 2287278 |
Zbl 1119.49014
[7] Conca, C.:
Étude d'un fluide traversant une paroi perforée. I. Comportement limite près de la paroi. J. Math. Pures Appl., IX. Sér. French 66 (1987), 1-43.
MR 0884812 |
Zbl 0622.35061
[8] Conca, C.:
Étude d'un fluide traversant une paroi perforée. II. Comportement limite loin de la paroi. J. Math. Pures Appl., IX. Sér. French 66 (1987), 45-69.
MR 0884813 |
Zbl 0622.35062
[9] Craig, A. E., Dabiri, J. O., Koseff, J. R.:
A kinematic description of the key flow characteristics in an array of finite-height rotating cylinders. J. Fluids Eng. 138 (2016), Article ID 070906, 16 pages.
DOI 10.1115/1.4032600
[10] Diening, L., Feireisl, E., Lu, Y.:
The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier-Stokes system. ESAIM, Control Optim. Calc. Var. 23 (2017), 851-868.
DOI 10.1051/cocv/2016016 |
MR 3660451 |
Zbl 1375.35026
[14] Mikelić, A., Aganović, I.:
Homogenization in a porous media under a nonhomgeneous boundary condition. Boll. Unione Mat. Ital., VII. Ser., A 1 (1987), 171-180.
MR 0898276 |
Zbl 0629.76102