[1] Belbachir, H., Belkhir, A.:
Cross recurrence relations for $r$-Lah numbers. Ars Comb. 110 (2013), 199-203.
MR 3100323 |
Zbl 1313.11034
[2] Belbachir, H., Bousbaa, I. E.:
Combinatorial identities for the $r$-Lah numbers. Ars Comb. 115 (2014), 453-458.
MR 3236192 |
Zbl 1340.05010
[4] Carlitz, L.:
Weighted Stirling numbers of the first and second kind. I. Fibonacci Q. 18 (1980), 147-162.
MR 0570168 |
Zbl 0428.05003
[6] El-Desouky, B. S., Shiha, F. A.:
A $q$-analogue of $\bar{\alpha}$-Whitney numbers. Appl. Anal. Discrete Math. 12 (2018), 178-191.
DOI 10.2298/AADM1801178E |
MR 3800372
[9] Gyimesi, E., Nyul, G.:
A note on combinatorial subspaces and $r$-Stirling numbers. Util. Math. 105 (2017), 137-139.
MR 3727889 |
Zbl 1430.11034
[11] Lah, I.:
A new kind of numbers and its application in the actuarial mathematics. Inst. Actuários Portug., Bol. 9 (1954), 7-15.
Zbl 0055.37902
[12] Lah, I.:
Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik. Mitt.-Bl. Math. Statistik 7 (1955), 203-212 German.
MR 0074435 |
Zbl 0066.11801
[20] Ramírez, J. L., Shattuck, M.:
A $(p,q)$-analogue of the $r$-Whitney-Lah numbers. J. Integer Seq. 19 (2016), Article ID 16.5.6., 21 pages.
MR 3514549 |
Zbl 1342.05015
[22] Shattuck, M.:
A generalized recurrence formula for Stirling numbers and related sequences. Notes Number Theory Discrete Math. 21 (2015), 74-80.
Zbl 1346.05015