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Abstract. We give a graph theoretic interpretation of r-Lah numbers, namely, we show
that the r-Lah number

⌊

n
k

⌋

r
counting the number of r-partitions of an (n+ r)-element set

into k+ r ordered blocks is just equal to the number of matchings consisting of n− k edges
in the complete bipartite graph with partite sets of cardinality n and n+2r−1 (0 6 k 6 n,
r > 1). We present five independent proofs including a direct, bijective one. Finally, we
close our work with a similar result for r-Stirling numbers of the second kind.

Keywords: r-Lah number; number of matchings; complete bipartite graph; r-Stirling
number of the second kind

MSC 2020 : 05C70, 05C31, 05A19, 11B73

1. The r-Lah numbers

In the middle 1950s, Lah wrote two papers (see [11], [12]), one in actuarial math-

ematics and another in mathematical statistics, in which he defined the numbers

named after him as the coefficients in the equation connecting rising and falling fac-

torials. Namely, xn̄ =
n
∑

k=0

⌊

n
k

⌋

xk (n > 0), where xn̄ =
n−1
∏

i=0

(x+ i) and xk =
k−1
∏

i=0

(x− i).

Combinatorially, the Lah number
⌊

n
k

⌋

counts the number of partitions of an n-element

set into k ordered blocks (0 6 k 6 n), which means that the order of the elements

in each block matters.

Nyul and Rácz in [18] considered the r-generalization of Lah numbers and proved

many identities and properties. We note that these numbers are close relatives of
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r-Stirling numbers of the second kind, which will be discussed in a later section. To

define these numbers, we need the following notion: A partition of a set with at

least r elements is called an r-partition if r distinguished elements belong to distinct

blocks. Then, the r-Lah number
⌊

n
k

⌋

r
gives the number of r-partitions of an (n+ r)-

element set into k + r ordered blocks (0 6 k 6 n, r > 0). Obviously,
⌊

n

k

⌋

0
=

⌊

n

k

⌋

and
⌊

n
k

⌋

1
=

⌊

n+1

k+1

⌋

.

Belbachir, Belkhir in [1], Belbachir, Bousbaa in [2], and Shattuck in [22] derived

some additional identities for r-Lah numbers, while Mihoubi and Rahmani in [17]

encountered them as the values of special substitutions into the so-called partial

r-Bell polynomials.

Here, we stop for a moment to prove a second-order recurrence for r-Lah numbers

in which the coefficients are independent of the lower parameter. This proposition

is closely related to Theorem 3.5 in [19], but it seems to be missing from the current

list of r-Lah number identities.

Proposition 1.1. If n > 2, 1 6 k 6 n− 1 and r > 0, then

⌊

n+ 1

k

⌋

r

=

⌊

n

k − 1

⌋

r

+ (2n+ 2r)

⌊

n

k

⌋

r

− n(n+ 2r − 1)

⌊

n− 1

k

⌋

r

.

P r o o f. In order to enumerate the r-partitions of an (n+ r+1)-element set into

k+r ordered blocks, we choose a non-distinguished element. There exist
⌊

n

k−1

⌋

r
such

partitions if this element forms a singleton. Otherwise, after r-partitioning the other

n+ r elements into k + r ordered blocks, we can put the chosen element in 2n+ 2r

places, before or after any element. This would give (2n+ 2r)
⌊

n
k

⌋

r
possibilities, but

we have to subtract the number of the cases counted twice, namely, when the chosen

element is inserted between two other elements.

These duplicated cases can be of two types depending on the previous element

to our chosen element. On the one hand, if the previous element is one of the n

non-distinguished elements, then this ordered pair can be positioned before one of

the remaining n+r−1 elements in any of their r-partitions into k+r ordered blocks,

hence the number of duplicated cases of the first type is n(n + r − 1)
⌊

n−1

k

⌋

r
. On

the other hand, if the previous element is distinguished, then the element following

the chosen one has to be among the n non-distinguished elements, and the ordered

pair of the chosen and this latter element certainly goes after any of the r distin-

guished elements, thus the number of duplicated possibilities of the second type is

similarly nr
⌊

n−1

k

⌋

r
. �

In the last few years, further generalizations and several variants of r-Lah numbers

have been studied. Shattuck in [23] and [25] examined q-analogues of r-Lah numbers
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and restricted r-Lah numbers, while Schlosser and Yoo in [21] treated elliptic r-Lah

numbers. We mention another generalization of r-Lah numbers by Shattuck, see [24].

The curiosity of them is that they involve not only r-Lah numbers, but also r-Stirling

numbers of both kinds.

Cheon and Jung in [5] defined r-Whitney-Lah numbers. They were extensively

studied by Gyimesi and Nyul (see [10]) through a newly given combinatorial inter-

pretation. See also [6], [16], [20] as further references.

Finally, we recall the definition of r-Lah polynomials Ln,r(x) =
n
∑

k=0

⌊

n

k

⌋

r
xk, which

were systematically studied by Nyul and Rácz, see [19]. Their counterparts using the

above mentioned r-Whitney-Lah numbers as coefficients, the r-Dowling-Lah polyno-

mials, were investigated by Gyimesi, see [8].

In this paper, we provide a graph theoretic interpretation of r-Lah numbers. We

offer five proofs, from which the last one is the most important, since it is a direct

proof based on a bijective correspondence between r-partitions of a finite set into

ordered blocks and matchings in a complete bipartite graph. It turns out that this

interpretation of r-Lah numbers works even if r is a half-integer. Finally, we show

a similar result for r-Stirling numbers of the second kind.

2. Main result

In order to state and prove our main theorem, we have to introduce the following

notation.

Whenever we say that a complete bipartite graph Km,n has partite sets A and B,

then we always assume that |A| = m and |B| = n in this order.

Simply counting matchings in complete bipartite graphs is not a difficult task,

see, e.g., [7], but our purpose is to connect this question directly to r-Lah numbers.

For n, r > 1 and 0 6 k 6 n, denote by lr(n, k) the number of (n − k)-element

matchings in the complete bipartite graph Kn,n+r−1. By convention, we allow the

empty matching as the only 0-element matching. In the degenerate case n = 0, this

graph becomes an edgeless graph, therefore lr(0, 0) = 1.

We immediately obtain the following special values by simple arguments:

⊲ lr(n, 0) = rn̄,

⊲ lr(n, 1) = (r + 1)n̄ − rn̄ (n > 1),

⊲ lr(n, n− 1) = n(n+ r − 1) (n > 1),

⊲ lr(n, n) = 1.
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Using these numbers as coefficients, for n > 0 and r > 1, we can define the

polynomial

Ln,r(x) =

n
∑

k=0

lr(n, k)x
k,

which is the reciprocal polynomial of the matching generating polynomial of the

complete bipartite graph Kn,n+r−1.

Now, we are in position to formulate our main result, which states that r-Lah

numbers count matchings in those complete bipartite graphs where the difference of

the cardinalities of the partite sets is 2r − 1.

Theorem 2.1. If 0 6 k 6 n and r > 1, then

l2r(n, k) =

⌊

n

k

⌋

r

, Ln,2r(x) = Ln,r(x).

Remark 2.1. The theorem holds even for r = 0 if we assume 1 6 k 6 n, and the

proofs also work, sometimes with slight modifications. However, the condition r > 1

is mathematically non-restrictive, since
⌊

n
k

⌋

0
=

⌊

n−1

k−1

⌋

1
and the underlying bipartite

graphs are isomorphic. Therefore, we keep it in the rest of the paper.

3. Proofs

In this section, we present five independent proofs of Theorem 2.1. Four of them

use the properties of the numbers lr(n, k) and the polynomials Ln,r(x), namely, two

different types of recurrences, a polynomial identity between shifted rising and falling

factorials, and an explicit formula, respectively. But one can ask for a direct proof of

such a simple-looking formula. So finally, the last (not the shortest, but maybe the

nicest) one is a bijective proof, which we think brings new insight and understanding

to this interesting connection.

3.1. Proof 1.

Proposition 3.1. If n > 2, 1 6 k 6 n− 1 and r > 1, then

lr(n+ 1, k) = lr(n, k − 1) + (2n+ r)lr(n, k)− n(n+ r − 1)lr(n− 1, k),

and if n, r > 1, then

Ln+1,r(x) = (x+ 2n+ r)Ln,r(x)− n(n+ r − 1)Ln−1,r(x).
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P r o o f. We enumerate the (n − k + 1)-element matchings in the complete bi-

partite graph Kn+1,n+r with partite sets A and B. Let v ∈ A and w ∈ B be two

vertices.

If both v and w are unmatched, then we actually have a matching in Kn,n+r−1

obtained by deleting v and w, hence their number is lr(n, k − 1).

If v is matched, then its pair can be any of the n + r vertices from B, and

we have to choose an (n − k)-element matching in Kn,n+r−1 after deletion of v

and its pair, thus we have (n + r)lr(n, k) such matchings. Similarly, we have

(n + 1)lr(n, k) matchings when w is matched. But, of course, we counted the cases

where both v and w are matched twice, thus the number of these cases has to be

subtracted.

Obviously, there exist lr(n, k) matchings if v and w are the pairs of each other.

Otherwise, the pairs of v and w can be chosen in n+ r− 1 and n ways, respectively,

and we need to find additionally an (n − k − 1)-element matching in Kn−1,n+r−2

after deletion of these four vertices. Hence, the number of these latter possibilities

is n(n+ r − 1)lr(n− 1, k). �

Theorem 2.1 follows by comparing Proposition 3.1 with Proposition 1.1 (see

also [19], Theorem 3.5), together with the special values l2r(n, 0) = (2r)n̄ =
⌊

n

0

⌋

r
,

l2r(n, n− 1) = n(n+ 2r − 1) =
⌊

n
n−1

⌋

r
and l2r(n, n) = 1 =

⌊

n
n

⌋

r
.

3.2. Proof 2.

Proposition 3.2. If 1 6 k 6 n and r > 1, then

lr(n+ 1, k) = lr(n, k − 1) + (n+ k + r)lr(n, k),

Ln+1,r(x) = xL′n,r(x) + (x+ n+ r)Ln,r(x).

P r o o f. We enumerate again the (n− k + 1)-element matchings in the complete

bipartite graph Kn+1,n+r with partite sets A and B. Let v ∈ A and w ∈ B be two

vertices.

As we saw in the previous proof, we have lr(n, k−1) matchings if both v and w are

unmatched, while (n+r)lr(n, k)matchings if v is matched. Finally, if v is unmatched,

but w is matched, then first we pick an (n − k)-element matching in Kn,n+r−1

obtained by deleting v and w, thereafter the pair of w can be chosen from A in k

ways, which gives klr(n, k) additional possibilities. �

Theorem 2.1 follows by comparing Proposition 3.2 with Theorem 3.1 in [18], to-

gether with the special values l2r(n, 0) = (2r)n̄ =
⌊

n

0

⌋

r
and l2r(n, n) = 1 =

⌊

n

n

⌋

r
.
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3.3. Proof 3.

Proposition 3.3. If n > 0 and r > 1, then

(x+ r)n̄ =

n
∑

k=0

lr(n, k)x
k.

P r o o f. We may assume that n > 1. Consider the complete bipartite graph

Kn,n+r−1 with partite sets A and B, and extend B with m new vertices (m > n).

The number of the matchings in the extended graph Kn,m+n+r−1 which cover A is

simply (m+ n+ r − 1)n = (m+ r)n̄.

Now, we count these matchings in another way. Denote by k the number of

vertices in A whose pair is one of the new vertices (k = 0, . . . , n). We begin with an

(n− k)-element matching in the original graph, and then we choose the pairs of the

remaining k vertices in A from the m new vertices. This gives lr(n, k)m
k possibilities

for a fixed k.

Therefore, (m + r)n̄ =
n
∑

k=0

lr(n, k)m
k holds for all m > n, which completes the

proof. �

Theorem 2.1 follows by comparing Proposition 3.3 with Theorem 3.2 in [18].

3.4. Proof 4.

Proposition 3.4. If 0 6 k 6 n and r > 1, then

lr(n, k) =
n!

k!

(

n+ r − 1

k + r − 1

)

.

P r o o f. We may assume that n > 1. Consider the complete bipartite graph

Kn,n+r−1 with partite sets A and B. To find the number of (n−k)-element matchings

in this graph, first we choose the n− k matched vertices in B, then find their pairs

from A, whence the result is

(

n+ r − 1

n− k

)

nn−k =
n!

k!

(

n+ r − 1

k + r − 1

)

.

�

Theorem 2.1 follows by comparing Proposition 3.4 with Theorem 3.7 in [18].

3.5. Proof 5. Last but not least, we present a fifth proof which is based on

a direct, bijective assignment.
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Let X = {x1, . . . , xn, y1, . . . , yr} be an (n + r)-element set with distinguished el-

ements y1, . . . , yr. Further, consider the complete bipartite graph Kn,n+2r−1 with

partite sets A = {x1, . . . , xn} and B = {←−y1 ,
−→y1 , . . . ,

←−yr ,
−→yr , 1, . . . , n − 1}. Then, we

provide a bijection between the r-partitions of X into k + r ordered blocks and

the (n − k)-element matchings in the complete bipartite graph Kn,n+2r−1, as fol-

lows.

Pick an r-partition of X into k + r ordered blocks. First we write the ordered

blocks containing the distinguished elements y1, . . . , yr in this order, thereafter we

arrange the other ordered blocks in increasing order of the index of their first ele-

ments.

If some xi is the leading element of an ordered block containing no distinguished

element, then xi, as a vertex from A, is unmatched. If xi is the first element of the

ordered block containing yj, then xi is matched with
←−yj , while if xi is the element

just after yj in its ordered block, then xi is matched with
−→yj . If there are no elements

before/after yj in its ordered block, then
←−yj /
−→yj is unmatched. For any other xi, we

count the non-distinguished elements which stand before xi (in its own ordered block

or in a preceding ordered block) and match xi with this number between 1 and n−1

as a vertex from B.

Obviously, the result of this construction is a matching in the graph Kn,n+2r−1.

Since the number of unmatched vertices from A is k, the number of ordered blocks

containing no distinguished element, we have that the cardinality of the obtained

matching is n− k.

In order to show that the above assignment is indeed bijective, we describe how

to reconstruct the r-partition from a matching. Pick an (n− k)-element matching in

the graph Kn,n+2r−1. First, we place y1, . . . , yr into distinct ordered blocks in this

order. If←−yi /
−→yi is matched, which means that there is at least one non-distinguished

element before/after yi in its ordered block, then we put its pair before/after yi
into this ordered block, which will be the leading element/the element just after yi.

For an unmatched vertex from A, we open a new ordered block and place it there,

where it will be the leading element. These new ordered blocks stand after the

above ordered blocks, and we arrange them in increasing order of the index of the

unmatched vertices. Finally, we consider the vertices 1, . . . , n− 1 ∈ B in this order.

If some j is matched, then we put its pair directly after the previously placed jth

non-distinguished element from the left.

This procedure gives an r-partition of X , because y1, . . . , yr trivially belong to

distinct ordered blocks. On the other hand, there are k unmatched vertices in A,

hence we opened k new ordered blocks beyond these blocks, and the number of

ordered blocks is k + r. �

953



Remark 3.1. To make this proof clearer, we illustrate the above assignment

with an example. Let n = 11, k = 2 and r = 3. Then, the 3-partition

{(x8, x5, y1), (x6, y2, x2, x11, x9), (y3, x4), (x7), (x10, x1, x3)}

of the 14-element set {x1, . . . , x11, y1, y2, y3} into 5 ordered blocks corresponds to the

9-element matching

{{x8,
←−y1}, {x6,

←−y2}, {x2,
−→y2}, {x4,

−→y3}, {x5, 1}, {x11, 4}, {x9, 5}, {x1, 9}, {x3, 10}}

of the complete bipartite graph K11,16 with partite sets A = {x1, . . . , x11} and B =

{←−y1 ,
−→y1 ,
←−y2 ,
−→y2 ,
←−y3 ,
−→y3 , 1, . . . , 10}.

4. Some other properties

In [18], we gave two different expressions of r-Lah numbers in terms of (r − s)-

Lah numbers, but we provided a combinatorial proof only for Theorem 3.4 in [18],

whereas we proved Theorem 3.5 in [18] by algebraic manipulations. Although it

is possible to prove the latter result combinatorially using r-partitions into ordered

blocks (see Appendix of the present paper), it is more straightforward to do so by

the above graph theoretic interpretation of r-Lah numbers.

Proposition 4.1. If 0 6 k 6 n and 0 6 s < r, then

lr(n, k) =

n
∑

j=k

lr−s(n, j)

(

j

k

)

sj−k.

P r o o f. We may assume that n > 1. We enumerate the (n−k)-element matchings

in the complete bipartite graph Kn,n+r−1 with partite sets A and B, where C is an

s-element subset of B.

Denote by j − k the number of matched vertices in A whose pair is in C

(j = k, . . . , n). To obtain such a matching, we begin with an (n − j)-element

matching in Kn,n+r−s−1 with partite sets A and B \C, then choose the other j − k

matched vertices from the j still unmatched vertices of A, and finally their pairs

from C. Altogether, we have lr−s(n, j)
(

j

j−k

)

sj−k possibilities for a fixed j. �

We continue with four further recurrences, which obviously do not have counter-

parts for r-Lah numbers.
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Proposition 4.2.

(1) If 1 6 k 6 n and r > 1, then

lr(n+ 1, k) = lr+1(n, k − 1) + (n+ r)lr(n, k),

Ln+1,r(x) = xLn,r+1(x) + (n+ r)Ln,r(x).

(2) If 1 6 k 6 n and r > 1, then

lr(n+ 1, k) = lr+1(n, k − 1) + (k + r)lr+1(n, k),

Ln+1,r(x) = (x+ r)Ln,r+1(x) + xL′n,r+1(x).

(3) If 0 6 k 6 n and r > 2, then

lr(n+ 1, k) = lr−1(n+ 1, k) + (n+ 1)lr(n, k),

Ln+1,r(x) = Ln+1,r−1(x) + (n+ 1)Ln,r(x).

(4) If 0 6 k 6 n and r > 2, then

lr(n+ 1, k) = lr−1(n+ 1, k) + (k + 1)lr−1(n+ 1, k + 1),

Ln+1,r(x) = Ln+1,r−1(x) + L
′
n+1,r−1(x).

P r o o f. We sketch the proof for the last identity by enumerating the (n− k+1)-

element matchings in the complete bipartite graph Kn+1,n+r with partite sets A

and B. Let w ∈ B be a vertex.

If w is unmatched, then we actually have a matching in Kn+1,n+r−1 after deletion

of w. While, if w is matched, then first we choose an (n − k)-element matching in

Kn+1,n+r−1, and there remain k + 1 possibilities for the pair of w. �

Remark 4.1. We note that Proposition 3.2 follows from Proposition 4.2 by

combining the first and fourth identities.

We close this section with the observation that our main result immediately implies

Theorem 3.8 in [19], whose proof was based on the counterpart of Proposition 3.2

and some mathematical analysis.

Proposition 4.3. If n, r > 1, then all roots of Ln,r(x) are negative real numbers.

P r o o f. It is well-known that all roots of the matching generating polynomial of

a graph are negative real numbers (see, e.g., [14]), consequently the same holds for

its reciprocal polynomial, in particular for Ln,r(x). �
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5. The r-Stirling numbers of the second kind

If the blocks in the definition of r-Lah numbers are unordered, then we obtain

the r-Stirling numbers of the second kind defined independently by Carlitz (see [4]),

Broder (see [3]) and Merris (see [15]). More precisely,
{

n

k

}

r
counts the number of

r-partitions of a set with n+ r elements into k+ r unordered nonempty subsets. We

note that Gyimesi and Nyul (see [9]) gave an interpretation of r-Stirling numbers

of the second kind in connection with the so-called combinatorial subspaces, which

notion is of particular importance in Ramsey theory.

It is known that classical Stirling numbers of the second kind count the number

of matchings in a special bipartite graph with partite sets of equal cardinalities,

see, e.g., Problem 4.31 in [13], where the solution makes use of Hamiltonian paths in

transitive tournaments. (We note that this is also mentioned in [14], but incorrectly.)

Here, we extend this result and provide a graph theoretic interpretation of

r-Stirling numbers of the second kind, which is similar to Theorem 2.1, but the

bijective proof can be given more easily.

Define the bipartite graph Gn,n+r−1 as the spanning subgraph of Kn,n+r−1 with

partite sets A = {vr+1, . . . , vn+r} andB = {w1, . . . , wn+r−1}, in which the vertices vi

and wj are adjacent if and only if i > j (i = r + 1, . . . , n+ r, j = 1, . . . , n+ r − 1).

Proposition 5.1. If 0 6 k 6 n and r > 1, then the number of (n − k)-element

matchings in the graph Gn,n+r−1 is
{

n
k

}

r
.

P r o o f. We construct a bijective mapping between the r-partitions of the (n+r)-

element set X = {x1, . . . , xn+r} with distinguished elements x1, . . . , xr into k + r

unordered blocks and the (n− k)-element matchings in the graph Gn,n+r−1.

Pick an r-partition ofX into k+r blocks, where we write the elements in increasing

order of their indices in each block. If xi stands just after xj in a block (i > j), then

we choose the edge {vi, wj}, where r+1 6 i 6 n+r since two distinguished elements

cannot be in the same block.

The number of unmatched vertices in A is k, because it is the number of blocks

containing no distinguished element, and vi is unmatched if and only if the non-

distinguished element xi is listed first in its block. This means that the chosen edges

constitute a matching whose cardinality is n− k.

We can reconstruct the r-partition from an (n− k)-element matching, as follows.

We go through the elements of B in increasing order of their indices. If the vertex wj

is matched with vi and xj is not listed yet, then open a new block beginning with xj

and xi. If wj is matched with vi and xj is already listed, then write xi after xj in its

block. If wj is unmatched and xj is already listed, then its block is simply closed.

If wj is unmatched, but xj has not appeared yet, then xj forms a singleton. Finally,
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whenever xn+r is written down, then that block is closed, otherwise, if it does not

happen, then it forms a singleton.

By definition of the graph Gn,n+r−1, the distinguished elements x1, . . . , xr belong

to distinct blocks, hence we arrive at an r-partition of X . The number of blocks is

k + r, the number of unmatched vertices in B plus 1 (because of xn+r). �

Remark 5.1. Again, we illustrate the bijection in the proof with an example.

Let n = 10, k = 2 and r = 3. Then, the 3-partition

{{x1, x8, x11}, {x2, x5, x9, x12}, {x3, x7}, {x4, x6, x13}, {x10}}

of the 13-element set {x1, . . . , x13} into 5 unordered blocks corresponds to the

8-element matching

{{v8, w1}, {v11, w8}, {v5, w2}, {v9, w5}, {v12, w9}, {v7, w3}, {v6, w4}, {v13, w6}}

of the bipartite graphG10,12 with partite setsA={v4, . . . , v13} andB={w1, . . . , w12}.

6. Appendix

As we mentioned before Proposition 4.1, the proof of Theorem 3.5 in [18] did not

use any combinatorial argument in that paper. We eliminate this lack based on the

nice idea suggested by the referee.

For 0 6 k 6 n and 0 6 s 6 r, we enumerate the
⌊

n
k

⌋

r
r-partitions of an (n + r)-

element set into k + r ordered blocks. If we consider such a partition and delete the

first s distinguished elements, then each of their ordered blocks splits into two ordered

subsets. After omitting the possibly empty ordered sets, denote by j the number of

ordered blocks which contain no distinguished element (j = k, . . . ,min{n, k + 2s}).

For a fixed j, the n non-distinguished elements together with the last r − s dis-

tinguished ones can be (r − s)-partitioned into j + r − s ordered blocks in
⌊

n
j

⌋

r−s

ways, and, in addition, we put the first s distinguished elements into separate ordered

blocks. At this point, the number of ordered blocks is j + r, which is more than it

should be by j − k. The k untouched ordered blocks containing no distinguished

element can be chosen in
(

j

k

)

ways, while the other j − k ordered blocks containing

no distinguished element should be inserted before or after the first s distinguished

elements in their ordered blocks, but into different positions of the 2s possible ones.

Therefore, we conclude that

⌊

n

k

⌋

r

=

min{n,k+2s}
∑

j=k

⌊

n

j

⌋

r−s

(

j

k

)

(2s)j−k =

n
∑

j=k

⌊

n

j

⌋

r−s

(

j

k

)

(2s)j−k,

because (2s)j−k = 0 if j > k + 2s+ 1.
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Remark 6.1. Under the same assumptions, a similar approach leads us to the

analogous identity
{

n

k

}

r

=

n
∑

j=k

{

n

j

}

r−s

(

j

k

)

sj−k

for r-Stirling numbers of the second kind. But the proof is trickier in case of the

formula
[

n

k

]

r

=

n
∑

j=k

[

n

j

]

r−s

(

j

k

)

sj−k

for r-Stirling numbers of the first kind, because the idea should be combined with

the standard cycle representation of permutations (when the smallest number is

listed first in each cycle, and the cycles are sorted in decreasing order of their first

elements). We leave the details of this argument to the reader.
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