Previous |  Up |  Next

Article

Summary:
Tento článek je napsán u příležitosti udělení Abelovy ceny za rok 2021 László Lovászovi.
References:
[1] Aigner, M., Ziegler, G.: Proofs from THE BOOK. Springer, 1998. Zbl 0905.00001
[2] Alon, N., Kříž, I., Nešetřil, J.: How to color shift hypergraphs. Stud. Sci. Math. Hungar. 30 (1995), 1–11.
[3] Bernshteyn, A.: Measurable versions of the Lovász local lemma and measurable graph colorings. Adv. Math. 353 (2019), 153–223. DOI 10.1016/j.aim.2019.06.031 | MR 3979016
[4] Borgs, Ch., Chayes, J., Lovász, L., Sós, V. T., Vesztergombi, K.: Counting graph homomorphisms. In: Klazar, M., Kratochvíl, J., Loebl, M., Matoušek, J., Valtr, P., Thomas, R. (eds.): Topics in discrete mathematics, Springer, 2006, 315–371. MR 2249277
[5] Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In: Infinite and finite sets, Colloquia Mathematica Societatis János Bolyai 10, North-Holland, 1975, 609–627.
[6] Freedman, M., Lovász, L., Schrijver, L.: Reflection positivity, rank connectivity, and homomorphism of graphs. J. Amer. Math. Soc. 20 (2007), 37–51. DOI 10.1090/S0894-0347-06-00529-7 | MR 2257396
[7] Graham, R. L., Grötschel, M., Lovász, L.: Handbook of combinatorics. Elsevier, 1995.
[8] Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer, 1988.
[9] Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford University Press, 2006. MR 2089014
[10] Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Amer. Math. Soc. 43 (2006), 439–561. DOI 10.1090/S0273-0979-06-01126-8 | MR 2247919
[11] Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. of Math. 164 (2006), 51–229. DOI 10.4007/annals.2006.164.51 | MR 2233847
[12] Lenstra, A. K., Lenstra, A. W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261 (1982), 515–534. DOI 10.1007/BF01457454
[13] Lovász, L.: Operations with structures. Acta Math. Hungar. 18 (1967), 321–328. DOI 10.1007/BF02280291
[14] Lovász, L.: On chromatic number of graphs and set systems. Acta Math. Hungar. 19 (1968), 59–67. DOI 10.1007/BF01894680
[15] Lovász, L.: On the cancellation law among finite relational structures. Period. Math. Hungar. 1 (1971), 145–156. DOI 10.1007/BF02029172
[16] Lovász, L.: A characterization of perfect graphs. J. Combin. Theory Ser. B 13 (1972), 95–98. DOI 10.1016/0095-8956(72)90045-7
[17] Lovász, L.: A note on the line reconstruction problem. J. Combin. Theory Ser. B 13 (1972), 309–310. DOI 10.1016/0095-8956(72)90068-8
[18] Lovász, L.: Flats in matroids and geometric graphs. In: Combinatorial Surveys, Proc. 6th British Comb. Conf., Academic Press, 1977, 45–86.
[19] Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A 25 (1978), 319–324. DOI 10.1016/0097-3165(78)90022-5
[20] Lovász, L.: Combinatorial problems and exercises. North-Holland, 1979.
[21] Lovász, L.: On the Shannon capacity of graphs. IEEE Trans. Inform. Theory 25 (1979), 1–7. DOI 10.1109/TIT.1979.1055985
[22] Lovász, L.: Large networks and graph limits. American Mathematical Society, 2012. MR 3363148
[23] Lovász, L.: Graphs and geometry. American Mathematical Society, 2019. MR 3967118
[24] Lovász, L., Nešetřil, J., Pultr, A.: On a product dimension of graphs. J. Combin. Theory Ser. B 29 (1980), 47–67. DOI 10.1016/0095-8956(80)90043-X
[25] Lovász, L., Plummer, M.: Matching theory. North-Holland, 1986.
[26] Lovász, L., Szegedy, M.: Szemerédi’s lemma for the analyst. Geom. Funct. Anal. 17 (2007), 252–270. DOI 10.1007/s00039-007-0599-6 | MR 2306658
[27] Matoušek, J.: Using the Borsuk-Ulam theorem. Lectures on topological methods in combinatorics and geometry. Springer, 2003. MR 1988723
[28] Matoušek, J.: Thirty-three miniatures. Mathematical and algorithmic applications of linear algebra. American Mathematical Society, 2010. MR 2656313
[29] Müller, V.: The edge reconstruction hypothesis is true for graphs with more than $n\cdot \log n$ edges. J. Combin. Theory Ser. B 22 (1977), 281–283. DOI 10.1016/0095-8956(77)90074-0
[30] Nešetřil, J.: A combinatorial classic – sparse graphs with high chromatic number. In: Lovász, L., Ruzsa, I. Z., Sós, V. T. (eds.): Erdős centennial, Springer, 2013, 383–407. MR 3203606
[31] Odlyzko, A. M., te Riele, H. J. J.: Disproof of the Mertens conjecture. J. Reine Angew. Math. 357 (1985), 138–160.
Partner of
EuDML logo