[1] Aigner, M., Ziegler, G.:
Proofs from THE BOOK. Springer, 1998.
Zbl 0905.00001
[2] Alon, N., Kříž, I., Nešetřil, J.: How to color shift hypergraphs. Stud. Sci. Math. Hungar. 30 (1995), 1–11.
[4] Borgs, Ch., Chayes, J., Lovász, L., Sós, V. T., Vesztergombi, K.:
Counting graph homomorphisms. In: Klazar, M., Kratochvíl, J., Loebl, M., Matoušek, J., Valtr, P., Thomas, R. (eds.): Topics in discrete mathematics, Springer, 2006, 315–371.
MR 2249277
[5] Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In: Infinite and finite sets, Colloquia Mathematica Societatis János Bolyai 10, North-Holland, 1975, 609–627.
[7] Graham, R. L., Grötschel, M., Lovász, L.: Handbook of combinatorics. Elsevier, 1995.
[8] Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer, 1988.
[9] Hell, P., Nešetřil, J.:
Graphs and homomorphisms. Oxford University Press, 2006.
MR 2089014
[12] Lenstra, A. K., Lenstra, A. W., Lovász, L.:
Factoring polynomials with rational coefficients. Math. Ann. 261 (1982), 515–534.
DOI 10.1007/BF01457454
[14] Lovász, L.:
On chromatic number of graphs and set systems. Acta Math. Hungar. 19 (1968), 59–67.
DOI 10.1007/BF01894680
[15] Lovász, L.:
On the cancellation law among finite relational structures. Period. Math. Hungar. 1 (1971), 145–156.
DOI 10.1007/BF02029172
[18] Lovász, L.: Flats in matroids and geometric graphs. In: Combinatorial Surveys, Proc. 6th British Comb. Conf., Academic Press, 1977, 45–86.
[20] Lovász, L.: Combinatorial problems and exercises. North-Holland, 1979.
[22] Lovász, L.:
Large networks and graph limits. American Mathematical Society, 2012.
MR 3363148
[23] Lovász, L.:
Graphs and geometry. American Mathematical Society, 2019.
MR 3967118
[25] Lovász, L., Plummer, M.: Matching theory. North-Holland, 1986.
[27] Matoušek, J.:
Using the Borsuk-Ulam theorem. Lectures on topological methods in combinatorics and geometry. Springer, 2003.
MR 1988723
[28] Matoušek, J.:
Thirty-three miniatures. Mathematical and algorithmic applications of linear algebra. American Mathematical Society, 2010.
MR 2656313
[29] Müller, V.:
The edge reconstruction hypothesis is true for graphs with more than $n\cdot \log n$ edges. J. Combin. Theory Ser. B 22 (1977), 281–283.
DOI 10.1016/0095-8956(77)90074-0
[30] Nešetřil, J.:
A combinatorial classic – sparse graphs with high chromatic number. In: Lovász, L., Ruzsa, I. Z., Sós, V. T. (eds.): Erdős centennial, Springer, 2013, 383–407.
MR 3203606
[31] Odlyzko, A. M., te Riele, H. J. J.: Disproof of the Mertens conjecture. J. Reine Angew. Math. 357 (1985), 138–160.