[1] Altman, E., Shwartz, A.:
Constrained Markov Games: Nash Equilibria. In: Annals of Dynamic Games (V. Gaitsgory, J. Filar and K. Mizukami, eds. 6, Birkhauser, Boston 2000, pp. 213-221.
DOI |
Zbl 0957.91014
[2] Atar, R., Budhiraja, A.:
A stochastic differential game for the inhomogeneous $\infty$-Laplace equation. Ann. Probab.2 (2010), 498-531.
DOI
[3] Bäuerle, N., Rieder, U.:
Zero-sum risk-sensitive stochastic games. Stoch. Proc. Appl. 127 (2017), 622-642.
DOI
[4] Bielecki, T., Hernández-Hernández, D., Pliska, S. R.:
Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management. Math. Methods Oper. Res. 50 (1999), 167-188.
DOI |
Zbl 0959.91029
[5] Cavazos-Cadena, R., Hernández-Hernández, D.: Nash equilibria in a class of Markov stopping games. Kybernetika 48 (2012), 1027-1044.
[6] Filar, J. A., Vrieze, O. J.: Competitive Markov Decision Processes. Springer, Berlin 1996.
[7] Hernández-Lerma, O.:
Adaptive Markov Control Processes. Springer, New York 1989.
Zbl 0677.93073
[8] Hernández-Lerma, O., Lasserre, J. B.:
Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer, New York 1996.
Zbl 0840.93001
[9] Kolokoltsov, V. N., Malafeyev, O. A.:
Understanding Game Theory. World Scientific, Singapore 2010.
Zbl 1189.91001
[10] Martínez-Cortés, V. M.:
Bipersonal stochastic transient Markov games with stopping times and total reward criteria. Kybernetika 57 (2021), 1-14.
DOI
[11] Peskir, G.:
On the American option problem. Math. Finance 15 (2005), 169-181.
DOI |
Zbl 1109.91028
[12] Peskir, G., Shiryaev, A.:
Optimal Stopping and Free-Boundary Problems. Birkhau\-ser, Boston 2010.
Zbl 1115.60001
[13] Piunovskiy, A. B.: Examples in Markov Decision Processes. Imperial College Press, London 2013.
[14] Puterman, M.:
Markov Decision Processes. Wiley, New York 1994.
Zbl 1184.90170
[16] Shiryaev, A.:
Optimal Stopping Rules. Springer, New York 1978.
Zbl 1138.60008
[17] Sladký, K.: Ramsey growth model under uncertainty. In: Proc. 27th International Conference Mathematical Methods in Economics (H. Brozová, ed.), Kostelec nad Černými lesy 2009, pp. 296-300.
[18] Sladký, K.: Risk-sensitive Ramsey growth model. In: Proc. 28th International Conference on Mathematical Methods in Economics (M. Houda and J. Friebelová, eds.) České Budějovice 2010, pp. 560-565.
[19] Sladký, K.:
Risk-sensitive average optimality in Markov decision processes. Kybernetika 54 (2018), 1218-1230.
DOI
[20] White, D. J.:
Real applications of Markov decision processes. Interfaces 15 (1985), 73-83.
DOI
[21] White, D. J.:
Further real applications of Markov decision processes. Interfaces 18 (1988), 55-61.
DOI
[22] White, D. J.:
A survey of applications of Markov decision processes. J. Opl. Res. Soc. 44 (1993), 1073-1096.
DOI
[23] Zachrisson, L. E.: Markov Games. In: Advances in Game Theory (M. Dresher, L. S. Shapley and A. W. Tucker, eds.), Princeton Univ. Press, Princeton N.J. 1964, pp. 211-253.