[1] Aubert, G., Kornprobst, P.:
Mathematical Problems in Image Processing: partial differential equations and the calculus of variations. (Second edition). Applied Mathematical Science 147, Springer-Verlag, New York 2006.
DOI
[2] Bardsley, J. M., Goldes, J.:
Techniques for regularization parameter and hyper-parameter selection in PET and SPECT imaging. Inverse Probl. Sci. Engrg. 19 (2011), 2, 267-280.
DOI
[3] Boyd, S., Parikh, N., al., et:
Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3 (2010), 1-122.
DOI 10.1561/2200000016
[4] Bovik, A. C., Wang, Z.:
Modern Image Quality Assessment, Synthesis Lectures on Image, Video, and Multimedia Processing. Morgan and Claypool Publishers, 2006.
DOI
[5] Chan, R. H., Chen, K.:
Multilevel algorithm for a Poisson noise removal model with total-variation regularization. Int. J. Comput. Math. 84 (2007), 8, 1183-1198.
DOI
[6] Chen, D. Q., Cheng, L. Z.:
Deconvolving Poissonian images by a novel hybrid variational model. J. Vis. Commun. Image R. 22 (2011), 7, 643-652.
DOI
[7] Chen, Y. M., Wunderli, T.:
Adaptive total variation for image restoration in BV space. J. Math. Anal. Appl. 272 (2002), 1, 117-137.
DOI
[8] Dupe, F. X., Fadili, M. J., Starck, J L.: Deconvolution of confocal microscopy images using proximal iteration and sparse representations. In: I. S. Biomed. Imaging, Paris, France (2008), pp. 736-739.
[9] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics, SIAM 1999.
[10] Eckstein, J., Bertsekas, D. P.:
On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Programming 55 (1992), 293-318.
DOI
[11] Frosioa, I., Borghese, N. A.:
Compression and smart coding of offset and gain maps for intraoral digital x-ray sensors. Med. Phys. 36 (2009), 2, 464-479.
DOI
[12] He, C., Hu, C., Zhang, W., Shi, B.:
A fast adaptive parameter estimation for total variation image restoration. IEEE Trans. Image Process. 23 (2014), 12, 4954-4967.
DOI
[13] Jiang, L., Huang, J., Lv, X. G., Liu, J.:
Restoring Poissonian images by a combined first-order and second-order variation approach. J. Math. 2013 (2013), 274573.
DOI
[14] Jiang, L., Huang, J., Lv, X. G., Liu, J.:
Alternating direction method for the high-order total variation-based Poisson noise removal problem. Numer. Algorithms 69 (2015), 3, 495-516.
DOI
[15] Le, T., Chartrand, R., Asaki, T.:
A variational approach to constructing images corrupted by Poisson noise. J. Math. Imaging Vis. 27 (2007), 257-263.
DOI
[16] Li, F., Shen, C. M., Fan, J. S., Shen, C. L.:
Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image Res. 18 (2007), 4, 322-330.
DOI
[17] Liu, Q., Yao, Z., Ke, Y.:
Entropy solutions for a fourth-order nonlinear degenerate problem for noise removal. Nonlinear Anal. Theor. 67 (2007), 6, 1908-1918.
DOI
[18] Liu, X.:
Augmented Lagrangian method for total generalized variation based Poissonian image restoration. Comput. Math. Appl. 71 (2016), 8, 1694-1705.
DOI
[19] Liu, X., Huang, L.:
Total bounded variation-based Poissonian images recovery by split Bregman iteration. Math. Methods Appl. Sci. 35, (2012), 5, 520-529.
DOI
[20] Liu, X., Huang, L.:
Poissonian image reconstruction using alternating direction algorithm. J. Electronic Imaging 22 (2013), 3, 033007.
DOI
[21] Lv, X. G., Jiang, L., Liu, J.:
Deblurring Poisson noisy images by total variation with overlapping group sparsity. Appl. Math. Comput. 289 (2016), 20, 132-148.
DOI
[22] Ma, M., Zhang, J., al., et:
Adaptive image restoration via a relaxed regularization of mean curvature. Math. Probl. Eng. (2020), 3416907.
DOI
[23] Micchelli, C. A., Shen, L., Xu, Y.:
Proximity algorithms for image models: denoising. Inverse Probl. 27 (2011), 4, 045009.
DOI
[24] Osher, S., Scherzer, O.:
G-norm properties of bounded variation regularization. Commun. Math. Sci. 2 (2004), 2, 237-254.
DOI
[25] Padcharoen, A., Kumama, P., Martinez-Moreno, J.:
Augmented Lagrangian method for TV-$l$1-$l$2 based colour image restoration. J. Comput. Appl. Math.354 (2019), 507-519.
DOI
[26] Pham, C. T., Kopylov, A.:
Multi-quadratic dynamic programming procedure of edge-preserving denoising for medical images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-5/W6 (2015), 101-106.
DOI
[27] Pham, C. T., Gamard, G., Kopylov, A., Tran, T. T. T.:
An algorithm for image restoration with mixed noise using total variation regularization. Turk. J. Elec. Eng. Comp. Sci. 26 (2018), 2832-2846.
DOI
[28] Pham, C. T., Kopylov, A. V.:
Tree-serial parametric dynamic programming with flexible prior model for image denoising. Comput. Opt. 42 (2018), 838-845.
DOI
[29] Pham, C. T., Tran, T. T. T., al., et.:
An adaptive algorithm for restoring image corrupted by mixed noise. Cybern. Phys. 8 (2019), 73-82.
DOI
[30] Pham, C. T., Tran, T. T. T., Gamard, G.:
An efficient total variation minimization method for image restoration. Informatica 31 (2020), 539-560.
DOI
[31] Sarder, P., Nehorai, A.:
Deconvolution method for 3D fluorescence microscopy images. IEEE Signal Process. Magazine 23 (2006), 3, 32-45.
DOI
[32] Sawatzky, A., Brune, C., Kasters, T., Wabbeling, F., Burger, M.:
EM-TV methods for inverse problems with Poisson noise. Lect. Notes Math. Springer 2090 (2013), 71-142.
DOI
[33] Setzer, S., Steidl, G., Teuber, T.:
Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image R. 21 (2010), 3, 193-199.
DOI
[34] Yan, M.:
EM-type algorithms for image reconstruction with background emission and Poisson noise. Lect. Notes Comput. Sci. Springer Berlin Heidelberg 6938 (2011), 33-42.
DOI
[35] Zhang, J., Ma, M., Wu, Z., Deng, C.:
High-order total bounded variation model and its fast algorithm for poissonian image restoration. Math. Probl. Engrg. (2019), 2502731.
DOI
[36] Wang, Y., Yang, J., Yin, W., Zhang, Y.:
A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1 (2008), 3, 248-272.
DOI
[37] Wen, Y., Chan, R. H., Zeng, T.:
Primal-dual algorithms for total variation based image restoration under Poisson noise. Sci. China Math. 59 (2016), 141-160.
DOI
[38] Woo, H., Yun, S.:
Alternating minimization algorithm for speckle reduction with a shifting technique. IEEE T. Image Process. 21 (2012), 1701-1714.
DOI