Previous |  Up |  Next

Article

Keywords:
Root system; rook placement; Borel subgroup; coadjoint orbit; graded poset
Summary:
A rook placement is a subset of a root system consisting of positive roots with pairwise non-positive inner products. To each rook placement in a root system one can assign the coadjoint orbit of the Borel subgroup of a reductive algebraic group with this root system. Degenerations of such orbits induce a natural partial order on the set of rook placements. We study combinatorial structure of the set of rook placements in $A_{n-1}$ with respect to a slightly different order and prove that this poset is graded.
References:
[1] Andrè, C.A.M.: The basic character table of the unitriangular group. J. Algebra, 241, 2001, 437-471, DOI 10.1006/jabr.2001.8734
[2] Andrè, C.A.M., Neto, A.M.: Super-characters of finite unipotent groups of types $B_n$, $C_n$ and $D_n$. J. Algebra, 305, 2006, 394-429, DOI 10.1016/j.jalgebra.2006.04.030
[3] Bourbaki, N.: Lie groups and Lie algebras. 2002, Springer, Chapters 4--6..
[4] Humphreys, J.E.: Linear algebraic groups, Grad. Texts in Math. 21, 1998, Springer,
[5] Humphreys, J.E: Reflection groups and Coxeter groups. 1990, Cambridge University Press, Cambridge,
[6] Ignatyev, M.V.: Combinatorics of $B$-orbits and the Bruhat--Chevalley order on involutions. Transform. Groups, 17, 3, 2012, 747-780, arXiv:math.RT/1101.2189.. DOI 10.1007/s00031-012-9191-8
[7] Ignatyev, M.V.: The Bruhat-Chevalley order on involutions of the hyperoctahedral group and combinatorics of $B$-orbit closures. Zapiski Nauchnykh Seminarov POMI, 400, 2012, 166-188, English translation: J. Math. Sci. 192 (2) (2013), 220--231; arXiv:math.RT/1112.2624..
[8] Ignatyev, M.V.: Orthogonal subsets of classical root systems and coadjoint orbits of unipotent groups. Mat. Zametki, 86, 1, 2009, 65-80, English translation: Math. Notes 86 (1) (2009), 65--80; arXiv:math.RT/0904.2841..
[9] Ignatev, M.V.: Orthogonal subsets of root systems and the orbit method. Algebra i Analiz, 22, 5, 2010, 104-130, English translation: St. Petersburg Math. J., 22 (5) (2011), 777--794; arXiv:math.RT/1007.5220..
[10] Ignatyev, M.V., Vasyukhin, A.S.: Rook placements in $A_n$ and combinatorics of $B$-orbit closures. J. Lie Theory, 24, 4, 2014, 931-956,
[11] Incitti, F.: Bruhat order on the involutions of classical Weyl groups. 2003, Ph.D. thesis, Dipartimento di Matematika ``Guido Castelnuovo'', Universit¸ di Roma ``La Sapienza.''.
[12] Incitti, F.: The Bruhat order on the involutions of the symmetric groups. J. Alg. Combin, 20, 3, 2004, 243-261, DOI 10.1023/B:JACO.0000048514.62391.f4
[13] Kerov, S.V.: Rooks on ferrers boards and matrix integrals. Zapiski Nauchnykh Seminarov POMI, 240, 1997, 136-146, English translation: J. Math. Sci., 96 (5) (1999), 3531--3536..
[14] Kirillov, A.A.: Unitary representations of nilpotent Lie groups. Russian Math. Surveys, 17, 1962, 53-110, DOI 10.1070/RM1962v017n04ABEH004118
[15] Kirillov, A.A.: Lectures on the orbit method, Grad. Studies in Math. 64, 2004, American Mathematical Soc., DOI 10.1090/gsm/064
[16] Melnikov, A.: $B$-orbit in solution to the equation $X^2=0$ in triangular matrices. J. Algebra, 223, 1, 2000, 101-108, DOI 10.1006/jabr.1999.8056
[17] Melnikov, A.: Description of $B$-orbit closures of order 2 in upper-triangular matrices. Transform. Groups, 11, 2, 2006, 217-247, DOI 10.1007/s00031-004-1111-0
[18] Panov, A.N.: Involutions in $S_n$ and associated coadjoint orbits. Zapiski Nauchnykh Seminarov POMI, 349, 2007, 150-173, English translation: J. Math. Sci. 151 (3) (2008), 3018--3031..
Partner of
EuDML logo