[1] Bloh, A.: A generalization of the concept of a Lie algebra. Sov. Math. Dokl., 6, 1965, 1450-1452,
[2] Casas, J. M., Fernandez-Casado, R., García-Martínez, X., Khalmadze, E.: Actor of a crossed module of Leibniz algebras. Theory and Applications of Categories, 33, 2, 2018, 23-42,
[3] Higman, G., Neumann, B. H., Neumann, H.:
Embedding theorems for groups. J. London. Math. Soc, 24, 1949, 247-254,
DOI 10.1112/jlms/s1-24.4.247
[4] Higman, G., Scotty, E. L.: Existentially closed groups. 1988, Clarendon Press,
[5] Kolesnikov, P. S., Makar-Limanov, L. G., Shestakov, I. P.: The Freiheitssatz for Generic Poisson Algebras. SIGMA, 10, 2014, 115-130,
[6] Ladra, M., Páez-Guillán, P., Zargeh, C.:
HNN-extension of Lie superalgebras. Bull. Malays. Math. Sci. Soc., 43, 2020, 1959-1970,
DOI 10.1007/s40840-019-00783-z
[7] Ladra, M., Shahryari, M., Zargeh, C.:
HNN-extensions of Leibniz algebras. Journal of Algebra, 532, 12, 2019, 183-200,
DOI 10.1016/j.jalgebra.2019.05.014
[8] J.,-L, Loday: Une Version non commutative des algebras de Lie: les algebras de Leibniz. Enseign. Math., 39, 1993, 269-293,
[9] Lyndon, R. C., Schupp, P. E.:
Combinatorial Group Theory. 2001, Springer-Verlag, New York,
Zbl 0997.20037
[10] Scott, W. R.: Algebraically closed groups. Proc. of AMS, 1, 2, 1951, 118-121,
[11] Shahryari, M.:
Existentially closed structures and some embedding theorems. Mathematical Notes, 101, 6, 2017, 1023-1032,
DOI 10.1134/S0001434617050297
[12] Silvestrov, S., Zargeh, C.: HNN-extension of involutive multiplicative Hom-Lie algebras. arXiv:2101.01319 [math.RA], 2021, preprint.