[1] Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.:
Implicit Fractional Differential and Integral Equations: Existence and Stability. De Gruyter, Berlin, 2018.
MR 3791511
[2] Abbas, S., Benchohra, M., N’Guérékata, G.M.:
Topics in Fractional Differential Equations. Springer, New York, 2012.
MR 2962045
[3] Abbas, S., Benchohra, M., N’Guérékata, G.M.:
Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York, 2015.
MR 3309582 |
Zbl 1314.34002
[4] Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T.:
On Cauchy problems with Caputo Hadamard fractional derivatives. J. Comput. Anal. Appl. 21 (2016), 661–681.
MR 3495061
[5] Agarwal, R.P., Benchohra, M., Hamani, S.:
Boundary value problems for fractional differential inclusions. Adv. Stud. Contemp. Math. 16 (2008), 181–196.
MR 2404634
[6] Agarwal, R.P., Benchohra, M., Hamani, S.:
A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (2010), 973–1033.
DOI 10.1007/s10440-008-9356-6 |
MR 2596185
[7] Aubin, J.P., Cellina, A.:
Differential Inclusions. Springer-Verlag, Berlin-Heidelberg, New York, 1984.
Zbl 0538.34007
[8] Aubin, J.P., Frankowska, H.:
Set-Valued Analysis. Birkhäuser, Boston, 1990.
Zbl 0713.49021
[9] Benchohra, M., Souid, M.S.:
Integrable solutions for implicit fractional order differential equations. Transylvanian J. Math. Mechanics 6 (2014), 101–107.
MR 3303329
[10] Benchohra, M., Souid, M.S.:
Integrable solutions for implicit fractional order functional differential equations with infinite delay. Arch. Math. (Brno) 51 (2015), 67–76.
DOI 10.5817/AM2015-2-67 |
MR 3367093
[11] Benchohra, M., Souid, M.S.:
$L^1$-solutions for implicit fractional order differential equations with nonlocal condition. Filomat 30 (2016), 1485–1492.
DOI 10.2298/FIL1606485B |
MR 3530093
[12] Bohnenblust, H.F., Karlin, S.: On a theorem of Ville. Contribution to the Theory of Games, Annals of Math. Studies, vol. 24, Princeton University Press, Princeton, 1950, pp. 155–160.
[13] Byszewski, L.:
Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), 494–505.
DOI 10.1016/0022-247X(91)90164-U
[14] Byszewski, L.: Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem. Selected problems of mathematics, , 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6, Cracow Univ. Technol., Krakow,, 1995, pp. 25–30.
[15] Castaing, C., Valadier, M.:
Convex Analysis and Measurable Multifunctions. Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
DOI 10.1007/BFb0087688 |
Zbl 0346.46038
[16] Covitz, H., Nadler, Jr., S.B.:
Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11.
DOI 10.1007/BF02771543
[17] Deimling, K.:
Multivalued Differential Equations. De Gruyter, Berlin-New York, 1992.
Zbl 0820.34009
[19] Guerraiche, N., Hamani, S., Henderson, J.:
Boundary value problems for differential inclusions with integral and anti-periodic conditions. Comm. Appl. Nonlinear Anal. 23 (2016), 33–46.
MR 3560553
[20] Guerraiche, N., Hamani, S., Henderson, J.:
Initial value problems for fractional functional differential inclusions with Hadamard type derivative. Arch. Math. (Brno) 52 (2016), 263–273.
DOI 10.5817/AM2016-4-263 |
MR 3610653
[21] Hilfer, R.:
Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.
Zbl 0998.26002
[22] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.:
Theory and Applications of Fractional Differential Equations. North-Holland Math. Studies, vol. 204, Elsevier, Amsterdam, 2006.
MR 2218073 |
Zbl 1092.45003
[24] Podlubny, I.:
Fractional Differential Equations. Academic Press, San Diego, 1999.
Zbl 0924.34008
[25] Zhang, S.:
Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differential Equ. 2006 (2006), no. 36, 1–12.
MR 2213580 |
Zbl 1096.34016