[1] Baird, P., Wood, J.C.:
Harmonic morphisms between Riemannian manifolds. London Math. Soc. Monographs, New Series, vol. 29, Oxford Univ. Press, 2003.
MR 2044031
[2] Besse, A.:
Einstein Manifolds. Springer-Verlag, 1987.
Zbl 0613.53001
[3] Danielo, L.: Structures Conformes, Harmonicité et Métriques d’Einstein. Ph.D. thesis, Université de Bretagne Occidentale, 2004.
[4] Danielo, L.:
Construction de métriques d’Einstein à partir de transformations biconformes. Ann. Fac. Sci. Toulouse (6) 15 (3) (2006), 553–588.
DOI 10.5802/afst.1129 |
MR 2246414
[5] Dieudonné, J.: Foundations of Modern Analysis. Academic Press, 1969.
[7] Hebey, E.: Introduction à l’analyse non linéaire sur les variétés. Diderot, Paris, 1997.
[8] Hilbert, D.: Die Grundlagen der Physik. Nachr. Ges. Wiss. Göttingen (1915), 395–407.
[9] Hitchin, N.J.:
On compact four-dimensional Einstein manifolds. J. Differential Geom. 9 (1974), 435–442.
DOI 10.4310/jdg/1214432419
[11] Spivak, M.: A Comprehensive Introduction to Riemannian Geometry. 2nd ed., Publish or Perish, Wilmongton DE, 1979.
[12] Thorpe, J.A.: Some remarks on the Gauss-Bonnet formula. J. Math. Mech. 18 (1969), 779–786.
[14] Yamabe, H.:
On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12 (1960), 21–37.
Zbl 0096.37201