[1] Abdulla, U. G.:
On the optimal control of the free boundary problems for the second order parabolic equations. I: Well-posedness and convergence of the method of lines. Inverse Probl. Imaging 7 (2013), 307-340.
DOI 10.3934/ipi.2013.7.307 |
MR 3063536 |
Zbl 1267.35247
[2] Abdulla, U. G.:
On the optimal control of the free boundary problems for the second order parabolic equations. II: Convergence of the method of finite differences. Inverse Probl. Imaging 10 (2016), 869-898.
DOI 10.3934/ipi.2016025 |
MR 3610744 |
Zbl 1348.35305
[5] Al-Saadi, S. N., Zhai, Z. J.:
Modeling phase change materials embedded in building enclosure: A review. Renew. Sust. Energy Rev. 21 (2013), 659-673.
DOI 10.1016/j.rser.2013.01.024
[6] Baran, B., Benner, P., Heiland, J., Saak, J.:
Optimal control of a Stefan problem fully coupled with incompressible Navier-Stokes equations and mesh movement. An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 26 (2018), 11-40.
DOI 10.2478/auom-2018-0016 |
MR 3841350 |
Zbl 1438.49050
[10] Dhir, V. K.:
Phase change heat transfer---a perspective for the future. Proceedings of Rohsenow Symposium on Future Trends in Heat Transfer Massachusetts Institute of Technology, Cambridge (2003), 6 pages Available at
http://web.mit.edu/hmtl/www/papers/DHIR.pdf
[14] Hintermüller, M., Laurain, A., Löbhard, C., Rautenberg, C. N., Surowiec, T. M.:
Elliptic mathematical programs with equilibrium constraints in function space: Optimality conditions and numerical realization. Trends in PDE Constrained Optimization International Series of Numerical Mathematics 165. Springer, Cham (2014), 133-153.
DOI 10.1007/978-3-319-05083-6_9 |
MR 3328974 |
Zbl 1327.49037
[15] Hintermüller, M., Löbhard, C., Tber, M. H.:
An $\ell_1$-penalty scheme for the optimal control of elliptic variational inequalities. Numerical Analysis and Optimization Springer Proceedings in Mathematics & Statistics 134. Springer, Cham (2015), 151-190.
DOI 10.1007/978-3-319-17689-5_7 |
MR 3446846 |
Zbl 1330.65101
[20] Pironneau, O., Huberson, S.:
Characteristic-Galerkin and the particle method for the convection-diffusion equation and the Navier-Stokes equations. Lectures in Applied Mathematics 28. Vortex Dynamics and Vortex Methods American Mathematical Society, Providence (1991), 547-565.
MR 1146484 |
Zbl 0751.76047
[21] Tröltzsch, F.:
Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Graduate Studies in Mathematics 112. American Mathematical Society, Providence (2010).
DOI 10.1090/gsm/112 |
MR 2583281 |
Zbl 1195.49001