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Abstract. In this paper, a sub-optimal boundary control strategy for a free boundary
problem is investigated. The model is described by a non-smooth convection-diffusion
equation. The control problem is addressed by an instantaneous strategy based on the
characteristics method. The resulting time independent control problems are formulated
as function space optimization problems with complementarity constraints. At each time
step, the existence of an optimal solution is proved and first-order optimality conditions
with regular Lagrange multipliers are derived for a penalized-regularized version. The
performance of the overall approach is illustrated by numerical examples.
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1. Introduction

Heat transfer processes involving phase change are relevant to many engineer-

ing disciplines including casting of metals, thermal storage, power systems, micro-

electronics, etc., see [10]. Enhancing the thermal performance of systems using such

processes requires a proper control of the temperature profile and the associated

phase change interface.

Our motivation in this paper is to design an optimization strategy for a melting

process that might be affected by a convection in the liquid phase. We focus on

two-phase materials with sharp interface and we adopt a single domain approach,

where the Stefan condition is automatically satisfied across the free boundary. More

precisely, we consider a source-based method in which the total enthalpy is split into

a specific heat and a latent heat acting as a source term in the energy equation [5].

Our goal is to control the temperature profile using the heat flux on a part of the
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boundary. This task is, nevertheless, quite challenging even for simple geometries. In

fact, the liquid-solid free boundary changes sharply with respect to the temperature.

Furthermore, from a numerical point of view, solutions may exhibit non-physical

oscillations for convection dominated flows. Finally, the related optimal control

problem is very demanding in terms of computational time and storage.

Optimal control problems in the context of Stefan-like models have attracted a lot

of attention since the eighties of the last century. We refer, in particular, to the

monograph [13] and the references therein. However, most used models were gen-

erally based on simplified assumptions on the free boundary, and therefore describe

roughly the phase-change process. Subsequent studies [16], [17], [7], [6] have consid-

ered two-phase Stefan problems with a focus on numerical aspects. Recently, some

existence and differentiability results are established in [1], [2], [3] for one-dimensional

problems.

To accommodate the problem, our strategy here exploits a semi-Lagrangian

scheme [20] in the context of an instantaneous control approach [9], [8]. The time

derivative and the convection terms are combined as a directional derivative along

the characteristics. We show that the time-discrete state equation satisfies a max-

imum principle. Then, at each time step we cast the time-discrete optimal control

problem—which only depends on the state at the previous time—as an optimization

problem with a complemantarity constraint between the temperature and solid frac-

tion. However, due to the structure of the feasible set, standard numerical algorithms

cannot be applied directly to solve such optimization problems (see for instance [14]).

Here, we propose a regularization-penalization technique, where we first regularize

the constraint on the temperature variable, then we incorporate the related com-

plementarity into the objective functional via an ℓ1-penalty approach [15]. For the

resulting regularized-penalized problems we show an existence and consistency result

and further we derive first-order necessary optimality conditions that enjoy regular

Lagrange multipliers. The overall approach leads, naturally, to sub-optimal solu-

tions. Nevertheless, a good performance is achieved in the numerical experiments.

2. State equation

Mathematical model. We consider the melting of a finite slab of a pure sub-

stance. The model is described by the non-dimensional source-based Stefan equation

∂y

∂t
+ ~v · ∇y −∇ · (κ∇y) =

∂

∂t
ξ + ~v · ∇ξ in Ω× (t0, tf ),

where κ = κ(x, t) is the thermal conductivity and ~v = ~v(x, t) is a convection velocity.

The solid fraction ξ = ξ(x, t) and temperature distribution y = y(x, t) are related
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through the relation

ξ ∈ H(y) :=





0 if y > 0,

[0, 1] if y = 0,

1 if y < 0.

Here the phase-change processes are assumed to be isothermal. The model do-

main Ω is an open bounded subdomain of Rd (d = 1, 2) with a smooth boundary Γ

corresponding to both solid and liquid regions (see Fig. 1). On Γ we distinguish

three parts: the system is insulated on ΓN , a fixed temperature yD = 0 is main-

tained on ΓD and a non-negative heat flux control u = u(x, t) is applied on ΓC . The

normal is denoted by ν. The substance is initially at the melting/freezing point

y(x, t0) = 0, ξ(x, t0) = ξ0(x) ∈ [0, 1] for x ∈ Ω.

The complete model equation reads

(Mt)





∂y

∂t
+ ~v · ∇y −∇ · (κ∇y) =

∂

∂t
ξ + ~v · ∇ξ in Ω× (t0, tf ),

ξ ∈ H(y) in Ω× (t0, tf ),

∂y

∂ν
= 0 in ΓN × (t0, tf ),

∂y

∂ν
= u in ΓC × (t0, tf ),

y = 0 in ΓD × (t0, tf ),

y(t0) = 0, ξ(t0) = ξ0 in Ω.

ΓC ΓD

ΓN

ΓN

~v

Liquid Solid

Figure 1. Problem configuration.

Time discretization. Due to the hyperbolic character of the state equation,

the numerical solutions may exhibit undesired oscillations for dominated convection

terms. One approach to deal with this issue consists in writing ∂ϕ/∂t + ~v · ∇ϕ
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as Dϕ/Dt the material derivative of a given function ϕ in the direction of ~v. The

corresponding characteristic curves are defined by




dX(x, t; s)

ds
= ~v(x, t),

X(x, t; t) = x

with X(x, t; s) being the position of a particle at time s, which was at x at time t.

Now for a given uniform time step size τ = (tf − t0)/N > 0 we can get an

approximate value of X at time tn−1 = t0 + (n− 1)τ by

Xn(x) := X(x, tn; tn−1) = x− τ~v(x, tn), n = 1, . . . , N.

Using a fully-implicit scheme, we obtain the semi-discrete form of (Mt)

(Mτ )





yn − τ∇ · (κn∇yn) = ξn + yn−1 − ξ
n−1

in Ω,

ξn ∈ H(yn) in Ω,

∂yn

∂ν
= 0 on ΓN ,

∂yn

∂ν
= un on ΓC ,

yn = 0 on ΓD,

ξ0 = ξ0, y0 = 0 in Ω,

where n = 1, . . . , N , ϕn(·) := ϕ(·, tn) and ϕn−1 := ϕn−1 ◦ Xn. To avoid technical

difficulties, it is assumed that Xn maps Ω to itself. Formulation (Mτ ) has the

advantage of not being restricted by a CFL condition and large time steps may

be used [19].

Variational formulation. In the following, standard notations for Lebesgue

and Sobolev spaces are employed (see e.g. [12], Chap. 5). The L2(Ω) norm for

either vector-valued or real-valued functions is denoted by ‖·‖. The L2(ΓC) norm is

specified by ‖·‖ΓC
. To define a variational formulation for the semi-discrete problem

we introduce the space

V := {ϕ ∈ H1(Ω); ϕ = 0 on ΓD}

endowed with the H1(Ω) norm ‖·‖H1(Ω).

At a specific time step tn the variational formulation of the semi-discrete state

equation consists in finding (yn, ξn) ∈ V × L2(Ω) such that

(WFn)

{
Ayn = ξn +Bun + yn−1 − ξ

n−1
in V ′,

ξn ∈ H(yn) a.e. in Ω
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for given un ∈ L2(ΓC), ξ
n−1 ∈ L2(Ω) and yn−1 ∈ V . Here B : L2(ΓC) 7→ V ′ and

A : V 7→ V ′ standing for the linear bounded operator defined by

〈Bv, ϕ〉 := τ(v, γ0ϕ)ΓC
∀ (v, ϕ) ∈ L2(ΓC)× V ,

〈Aψ,ϕ〉 := (ψ, ϕ) + τ(κn∇ψ,∇ϕ) ∀ (ψ, ϕ) ∈ V × V ,

where 〈·, ·〉 is the pairing between V and its dual V ′. The inner products in L2(Ω)

and L2(ΓC) are indicated by (·, ·) and (·, ·)ΓC
, respectively. Moreover, γ0 is the trace

operator in H1(Ω) and κn ∈ L∞(Ω) is such that the operator A is uniformly coercive

with a constant κ.

Regarding the solvability of (WFn) we state the following theorem whose proof

is deferred to Appendix A.

Theorem 2.1. Let un ∈ L2(ΓC), y
n−1 ∈ V and ξn−1 ∈ L2(Ω) such that un > 0

a.e. in ΓC , y
n−1 > 0 a.e. in Ω and 0 6 ξn−1 6 1 a.e. in Ω. Problem (WFn) has one

and only one solution (yn, ξn) ∈ V × L2(Ω) that is given by the solution of

(CSn)





Ayn = ξn +Bun + yn−1 − ξ
n−1

in V ′,

yn > 0, ξn > 0 a.e. in Ω,

(yn, ξn) = 0.

3. Sub-optimal control problem

In the following we aim to steer the system to a desired configuration, by acting on

the heat flux u at the boundary ΓC .We adopt an instantaneous optimal control con-

cept: at each time step tn, given the previous temperature and solid fraction profiles

yn−1 and ξn−1, we solve a time-independent optimal control problem. Regarding the

previous theorem, we consider the following PDE-constrained optimization problems

(On)





min J(yn, ξn, un) =
1

2
‖yn − ynd ‖

2
H1(Ω) +

1

2
‖ξn − ξnd ‖

2 +
ν

2
‖un‖2ΓC

,

over (yn, ξn, un) ∈ V × L2(Ω)× L2(ΓC),

s.t. Ayn = ξn +Bun + yn−1 − ξ
n−1

in V ′,

yn > 0 a.e. in Ω,

ξn > 0 a.e. in Ω,

un > 0 a.e. on ΓC ,

(ξn, yn) = 0,
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where ynd ∈ H1(Ω) and ξnd ∈ L2(Ω) correspond to a desired state at time tn and ν is

a regularization parameter.

The next lemma serves as a tool to establish some results of this paper. Its proof

is straightforward.

Lemma 3.1. Let (yk, ξk, uk)k∈N be a sequence in V × L2(Ω)× L2(ΓC) such that

(ξk, uk)k∈N is bounded in L
2(Ω)× L2(ΓC) and

Ayk = Buk + ξk + yn−1 − ξ
n−1

in V ′,(3.1)

yk > 0, ξk > 0 a.e. in Ω,(3.2)

uk > 0 a.e. on ΓC .(3.3)

Then there exists a sub-sequence still denoted by (yk, uk, ξk)k∈N such that

uk ⇀ u in L2(ΓC),(3.4)

ξk ⇀ ξ in L2(Ω),(3.5)

yk → y in L2(Ω),(3.6)

yk ⇀ y in V(3.7)

with (y, ξ, u) being an element of V × L2(Ω)× L2(ΓC) satisfying

Ay = Bu+ ξ + yn−1 − ξ
n−1

in V ′,(3.8)

y > 0, ξ > 0 a.e. in Ω,(3.9)

u > 0 a.e. on ΓC .(3.10)

Further,

(3.11) lim
k→∞

(ξk, yk) = (ξ, y).

In particular, if (ξk, yk) = 0, then (ξ, y) = 0.

Theorem 3.1. Problem (On) has at least one solution.

P r o o f. Let (ynk , ξ
n
k , u

n
k)k∈N ∈ V × L2(Ω) × L2(ΓC) be a minimizing sequence

of J over the feasible set of (On). Then (ξnk , u
n
k )k∈N is bounded in L

2(Ω)× L2(ΓC).

From Lemma 3.1 there exists a feasible element (yn, ξn, un) such that up to a sub-

sequence, (ynk , ξ
n
k , u

n
k)k∈N converges weakly to (yn, ξn, un) in V × L2(Ω) × L2(ΓC).

It is immediate to verify that J is weakly lower semi-continuous, which proves that

(yn, ξn, un) is a solution of (On). �
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4. Penalized-regularized optimal control problem

In this section we propose a function space approach to solve the problem (On).

Inspired by [15], we process a series of sub-problems (On
γ )γ>0 defined by

(On
γ )





min Jγ(y
n, ξn, un) := J(yn, ξn, un) + γ(ξn, yn + εγξ

n),

over (yn, ξn, un) ∈ V × L2(Ω)× L2(ΓC),

s.t. Ayn = Bun + ξn + yn−1 − ξ
n−1

in V ′,

yn + εγξ
n
> 0 a.e. in Ω,

ξn > 0 a.e. in Ω,

un > 0 a.e. on ΓC ,

where γ and εγ are positive parameters such that γ → ∞ and εγ → 0.More precisely,

we assume that

εγγ →
γ→∞

0.

The complementarity constraint will be increasingly satisfied by letting γ → ∞,

which provides a path-following method for the solution of the original control prob-

lems (On). Further we will show that Lagrange multipliers for (On
γ ) are regular

functions, so that using, for instance, a conforming finite elements discretization in

numerical experiments is justified.

Here and in the following, C is a generic constant not depending on γ.

Solvability and consistency of (On
γ )γ>0.

Theorem 4.1. For every fixed γ > 0 the penalized-regularized problem (On
γ ) has

at least one solution (ynγ , ξ
n
γ , u

n
γ ) in V × L2(Ω) × L2(ΓC). Furthermore, there exist

(yn∗ , ξ
n
∗ , u

n
∗ ) in V × L2(Ω)× L2(ΓC) and a sub-sequence (y

n
γ , ξ

n
γ , u

n
γ )γ>0 such that

unγ ⇀ u∗ in L2(ΓC),(4.1)

ξnγ ⇀ ξ∗ in L2(Ω),(4.2)

ynγ → yn∗ in L2(Ω),(4.3)

ynγ ⇀ yn∗ in V ,(4.4)

and (yn∗ , ξ
n
∗ , u

n
∗ ) is a solution of (O

n).

P r o o f. The existence of a solution (ynγ , ξ
n
γ , u

n
γ) to (O

n
γ ) follows from Lemma 3.1

and Jγ weak lower semi-continuity applied to a minimizing sequence. We recall that

Jγ(y
n
γ , ξ

n
γ , u

n
γ ) := J(ynγ , ξ

n
γ , u

n
γ ) + γ(ξnγ , y

n
γ + εγξ

n
γ ),

= J(ynγ , ξ
n
γ , u

n
γ ) + γ(ξnγ , y

n
γ ) + γεγ‖ξ

n
γ ‖

2.
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On the other hand,

(4.5) Jγ(y
n
γ , ξ

n
γ , u

n
γ) 6 Jγ(ỹ, ξ̃, ũ) 6 J(ỹ, ξ̃, ũ) + γεγ‖ξ̃‖

2 6 J(ỹ, ξ̃, ũ) + C‖ξ̃‖2

for all (ỹ, ξ̃, ũ) in Fn. Notice that Fn ⊆ Fn
γ for all γ > 0 with Fn and Fn

γ being the

feasible sets of (On) and (On
γ ), respectively.

Therefore, there exists a constant C not depending on γ such that

(4.6) ‖ξnγ ‖ 6 C, ‖unγ‖ 6 C, 0 6 (ξnγ , y
n
γ + εγξ

n
γ ) 6

C

γ
∀ γ > 0.

Then, by Lemma 3.1, there exist sub-sequences still denoted by (yγ , ξγ , uγ) ∈ Fγ

and (yn∗ , ξ
n
∗ , u

n
∗ ) in V × L2(Ω)× L2(ΓC) such that (4.1)–(4.4) hold and

Ayn∗ = Bun∗ + ξn∗ + yn−1 − ξ
n−1

in V ′,

yn∗ > 0 a.e. in Ω,

ξn∗ > 0 a.e. in Ω,

un∗ > 0 a.e. on ΓC .

From (4.2), (4.3), (4.6) and lim
γ→∞

εγ = 0 we have

lim
γ→∞

(ξnγ , y
n
γ + εγξ

n
γ ) = lim

γ→∞
εγ‖ξ

n
γ ‖

2 + lim
γ→∞

(ξnγ , y
n
γ ) = (ξn∗ , y

n
∗ )

additionally, (4.6) yields that

lim
γ→∞

(ξnγ , y
n
γ + εγξ

n
γ ) = 0.

Hence, (ξn∗ , y
n
∗ ) = 0 and (yn∗ , ξ

n
∗ , u

n
∗ ) ∈ Fn.

Now from the weak lower semi-continuity of J we have

J(yn∗ , ξ
n
∗ , u

n
∗ ) 6 lim inf

γ→∞
J(ynγ , ξ

n
γ , u

n
γ ).

Since J 6 Jγ , F
n ⊆ Fn

γ and εγγ →
γ→∞

0, it follows that

J(yn∗ , ξ
n
∗ , u

n
∗ ) 6 lim inf

γ→∞
Jγ(y

n
γ , ξ

n
γ , u

n
γ) 6 lim inf

γ→∞
Jγ(ỹ, ξ̃, ũ)

6 J(ỹ, ξ̃, ũ) + lim
γ→∞

γεγ‖ξ̃‖
2 6 J(ỹ, ξ̃, ũ)

for any (ỹ, ξ̃, ũ) in F . Consequently, (yn∗ , ξ
n
∗ , u

n
∗ ) is a solution to the limit optimal

control problem (On). �
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First order optimality conditions for (On
γ )γ>0. In order to derive the first

order optimality system for the regularized-penalized problems (On
γ )γ>0 we check the

Zowe-Kurcyusz constraints qualification [22], [21] which we recall in Appendix B. In

our context it requires the existence of (cy, cξ, cu, ζ, λ) in V × L2(Ω) × L2(ΓC) ×

L2(Ω)× R such that the following system holds:

(CQ)





Acy = Bcu + cξ + z′ in V ′,

cy + εγcξ − ζ + λ(ynγ + εγξ
n
γ ) = z a.e. in L2(Ω),

cξ > 0, ζ > 0 a.e. in L2(Ω),

cu > 0 a.e. in L2(ΓC),

λ > 0

for a given (z′, z) ∈ V ′ × L2(Ω). First, we pose

λ = 0, cu = 0, cξ = cξ,1 + cξ,2, ζ = ζ1 + ζ2

with

cξ,2 =
1

εγ
max(0, z), ζ2 = max(0,−z).

Then, we choose ζ1 ∈ V such that the system

Aζ1 = cξ,2 + z′ + Λ in V ′,(4.7)

Λ > 0, ζ1 > 0, 〈Λ, ζ1〉 = 0,(4.8)

holds for some Λ ∈ V ′. We mention that (4.7)–(4.8) is well-posed by the theory of

variational inequalities [18]. Finally, we assign to cξ,1 the solution of the following

elliptic partial differential equation

(4.9) εγAcξ,1 + cξ,1 = Λ in V ′.

Observe that cξ,1 > 0 by a standard maximum principle [12], p. 327. Now for

cy = ζ1 − εγcξ,1

we obtain

cy + εγcξ − ζ = cy + εγcξ,1 − ζ1 + εγcξ,2 − ζ2

= εγcξ,2 − ζ2 = max(0, z)−max(0,−z) = z

and

Acy = Aζ1 − εγAcξ,1 = cξ,2 + z′ + Λ − εγAcξ,1 = cξ,2 + z′ + cξ,1 = cξ + z′.

Here we have used (4.7)–(4.8) and (4.9). Therefore, problem (On
γ ) constraints are

qualified and the next proposition holds true.
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Proposition 4.1. Let (ynγ , ξ
n
γ , u

n
γ ) be a solution for the problem (On

γ ). Then there

exists a Lagrange multiplier vector (pnγ , λ
n
γ ) in V × L2(ΓC) such that the following

first order optimality system holds

Aynγ −Bunγ − ξnγ − yn−1
γ + ξ

n−1

γ = 0 in V ′,(4.10)

Apnγ + ynγ − ynd + γξnγ − λnγ = 0 in V ′,(4.11)

ynγ + εγξ
n
γ > 0, λnγ > 0, (ynγ + εγξ

n
γ , λ

n
γ ) = 0,(4.12)

ξnγ > 0, (ξnγ − ξnd + 2γεγξ
n
γ + γynγ − pnγ − εγλ

n
γ , τ − ξnγ ) > 0,(4.13)

unγ > 0, (αunγ − τB∗pnγ , v − unγ )ΓC
> 0,(4.14)

where τ and v are two non-negative arbitrary functions in L2(Ω) and L2(ΓC), re-

spectively, and B∗ is the adjoint operator of B.

R em a r k 4.1. (i) Conditions (4.13) and (4.14) correspond to the projection of

(1 + 2γεγ)
−1(ξnd + λnγ ) and τα

−1B∗pnγ over the non-negative cones in L
2(Ω) and

L2(ΓC), respectively:

unγ = max
(
0,
τ

α
B∗pnγ

)
, ξnγ = max

(
0,

1

1 + 2γεγ
(pnγ + ξnd + εγλ

n
γ − γynγ )

)
.

(ii) The step function uτγ , which is equal to the time discrete controls u
n
γ on each

interval [(n− 1)τ, nτ ] for n = 1, . . . , N , comprises a sub-optimal solution to a time-

continuous optimal control problem related to (Mt). A convergence analysis—with

respect to time step size τ—of uτγ and the corresponding state and Lagrange mul-

tipliers is of interest. In this respect one may investigate adapting the arguments

presented in [4] and the references therein. This analysis will be discussed in some

upcoming work.

5. Numerical experiments

In this section we present two preliminary numerical experiments to assess the

validity of the above developed theoretical procedure. At each time step tn = nτ

we solve a discrete version of the optimization problem (On)γk
for a sequence of

penalty parameters (γk)k∈N with γk = 10−3 × 1.5k and k = 1, . . . , 40. We select

a regularization parameter εγk
= (103 + γ4k)

−1. The parameter for the cost of the

control is taken ν = 10−4. The thermal conductivity is set to 1 in the two examples.

All functions are discretized by continuous piecewise linear finite elements. The fully

discretized penalized-regularized control problems corresponding to (On)γk
are then

solved numerically using the fmincon Matlab function.
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E x am p l e 5.1. We consider a one-dimensional free convection problem with

a known analytical solution [11]:

yex(x, t) =

{
exp(t− x)− 1 if 0 6 x 6 t,

0 if t 6 x 6 xmax,
ξex(x, t) =

{
0 if 0 6 x 6 t,

1 if t 6 x 6 xmax.

Our aim here is to apply a heat flux on the left boundary, ΓC = {0}, to get temper-

ature and solid fraction profiles as close as possible to the exact solution. For the

instantaneous boundary control problem we choose a fixed time step τ = 0.01 and

we set

ynd = yex(x, nτ), ξnd = ξex(x, nτ) for n = 1, . . . , N = 300.

For the computational domain we choose a uniform grid of size h = 0.01 with

xmax = 4. The analytical control uex(t) = exp(t) is very well reconstructed up to

the first few iterations as shown in Fig. 2. An excellent agreement has been found

between the analytical and controlled temperature profiles as depicted in Fig. 3. The

complementarity condition between the temperature and solid fraction are respected,

as shown in Fig. 4 for the sample instant t = 3, which emphasizes the relevance of

the developed regularization-penalization approach.

E x am p l e 5.2. Here we consider a two-dimensional problem where the compu-

tational domain Ω = (0, 2)× (0, 4) is discretized using a 50× 100 uniform grid. The

time step is taken τ = 0.1 and a constant convection velocity ~v =

(
− 1

2

0

)
is used.

No-heat flux condition is applied on the right boundary and temperature y = 0 is held

at the top and bottom. We apply the heat flux control on ΓC := {x ∈ Ω; x1 = 0}

to govern the system toward the following time-independent desired state:

ynd (x) = yd(x) =

{
exp(14 (4− x2)x2 − x1)− 1 if x1 <

1
4 (4 − x2)x2,

0 if x1 > 1
4 (4 − x2)x2,

ξnd (x) = ξd(x) =

{
0 if x1 <

1
4 (4 − x2)x2,

1 if x1 > 1
4 (4 − x2)x2.

Figs. 5–6 show the evolution of temperature y and solid fraction ξ driven by the sub-

optimal controls towards the desired state. A fairly good approximation is obtained.

The significant reduction of the cost functional value is achieved during the first five

time steps and almost stagnates up to t ≈ 1 as shown in Fig. 7. In Fig. 8 we present

the computed sub-optimal control at sample instances. We observe a strong control

at the first time step getting inactive near the boundaries. The controls shape is

consistent with the desired state one.
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Figure 3. Analytical and computed temperature profiles at different instants.
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Figure 4. Computed temperature and solid fraction profiles at time t = tf = 3.
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Figure 5. Computed temperatures at t = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.4 and the desired tem-
perature profile.
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Figure 6. Computed solid fraction at t = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.4 and the desired solid
fraction profile.
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R em a r k 5.1. To apply the developed approach on more realistic benchmarks,

a coupling with momentum and mass conservation equations is required. However,

many discretization and algorithmic aspects have to be developed first. Questions re-

lated to adaptive mesh refinement, selection of the optimization parameters, solution

algorithm and preconditioning will be addressed in a forthcoming study.
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Appendix A: Proof of Theorem 2.1

To show that the problem

{
Ayn = ξn +Bun + yn−1 − ξ

n−1
in V ′,

ξn ∈ H(yn), a.e. in Ω

has a solution, let Hε be a regularization of the Heaviside operator H given by

Hε(x) =





0 if x > ε,

1− x/ε if 0 6 x 6 ε,

1 if x 6 0.

Correspondingly, we consider the following regularized problem:

(WFn
ε )

{
Find ynε ∈ V such that ynε > 0 a.e in Ω,

Aynε = Hε(y
n
ε ) +Bun + yn−1 − ξ

n−1
in V ′.

Lemma 5.1. The regularized problem (WFn
ε ) has a unique solution y

n
ε .Moreover,

there exists a constant C not depending on ε such that

(5.1) ‖ynε ‖H1(Ω) 6 C.

P r o o f. Consider the mapping T which, for any ynε ∈ L2(Ω), associates

ỹnε = T (ynε ) to the solution of the elliptic problem

(5.2) Aỹnε = Hε(y
n
ε ) +Bun + yn−1 − ξ

n−1
in V ′.

Problem (5.2) has a unique solution by Lax-Milgram theorem. Moreover, there exists

a constant Const not depending on ε such that

(5.3) ‖ỹnε ‖H1(Ω) 6 Const.

Here, we have used the fact that (Hε(y
n
ε ))ε is bounded in L

∞(Ω) independently of ε.

The mapping T is then bounded from L2(Ω) to H1(Ω). From the compact em-

bedding of H1(Ω) into L2(Ω), it follows that T is completely continuous from V

to L2(Ω).Moreover, estimate (5.3) shows that T (BConst) ⊂ BConst with BConst being

the H1(Ω)-ball of radius Const. Schauder’s fixed-point theorem yields the existence

of a function ynε such that T (y
n
ε ) = ynε satisfying (5.1) with C = Const.

740



Next, we claim that ynε > 0 a.e. in Ω. Let (ynε )
− = min(0, ynε ). It is clear that

(ynε )
− ∈ V . By choosing ϕ = (ynε )

− in (5.2), we arrive at

〈Aynε , (y
n
ε )

−〉 = 〈Bun, (ynε )
−〉+ (yn−1 +H(ynε )− ξ

n−1
, (ynε )

−).

Since un > 0 a.e. in ΓC , y
n−1 > 0 a.e. in Ω and 0 6 ξn−1 6 1 a.e. in Ω and using

the fact that Hε(x) = 1 for x 6 0, we obtain

〈A(ynε )
−, (ynε )

−〉 = 〈Bun, (ynε )
−〉+ (yn−1 + 1− ξ

n−1
, (ynε )

−) 6 0.

The coercivity of A leads to (ynε )
− = 0 a.e. in Ω and then ynε > 0 a.e. in Ω. Conse-

quently, the solution ynε is a solution of (WFn
ε ). �

Now for any ε > 0, let ynε be the solution of the regularized problem (WFn
ε ).

From (5.1) we can find a subsequence, also denoted (ynε )ε>0, such that

ynε ⇀ yn in H1(Ω),

ynε → yn in L2(Ω),

Hε(y
n
ε )

∗
⇀ ξn in L∞(Ω).

By passing to the limit, we deduce that

(5.4)





yn > 0 a.e. in Ω,

0 6 ξn 6 1 a.e. in Ω,

Ayn = ξn +Bun + yn−1 − ξ
n−1

in V ′.

Further, observe that

(5.5) yn > 0, ξn ∈ H(yn) ⇔ yn > 0, 0 6 ξn 6 1, (yn, ξn) = 0.

Therefore, to complete the proof of existence of a solution for the initial problem, it

remains to prove that (yn, ξn) = 0. One has

(5.6) (ynε ,Hε(y
n
ε )) → (yn, ξn)

from the L2(Ω) strong convergence of ynε to y
n and the L∞(Ω) weak-* convergence

of Hε(y
n
ε ) to ξ

n.

On the other hand, from Hε expression we have

(ynε ,Hε(y
n
ε )) 6 εmeas(Ω) → 0.

Consequently (yn, ξn) = 0.
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Now, notice that if (yn, ξn) ∈ V × L2(Ω) is a solution to the complementarity

problem

(CSn)

{
ξn +Ayn = Bun + yn−1 − ξ

n−1
in V ′,

yn > 0, ξn > 0, (yn, ξn) = 0 a.e. in Ω,

then yn is a solution to the variational inequality

(VIn)

{
yn ∈ K := {q ∈ V ; q > 0 a.e. in Ω},

〈Ayn, q − yn〉 > 〈Bun, q − yn〉+ (yn−1 − ξ
n−1

, q − yn) ∀ q ∈ K.

Since (VIn) possesses a unique solution in V by virtue of Stampacchia-Rodriguez,

we deduce that yn is unique.

Finally, the uniqueness of ξn follows from the uniqueness of yn. More precisely, if

(yn, ξn1 ) ∈ V × L2(Ω) and (yn, ξn2 ) ∈ V × L2(Ω) are two solutions to (CSn), then

ξn1 = ξn2 = Ayn −Bun − yn−1 + ξ
n−1

in V ′.

Therefore, ξn1 − ξn2 = 0 in V ′. By the density of V ⊃ H1
0 (Ω) in L

2(Ω) we conclude

that ξn1 = ξn2 in L
2(Ω).

Appendix B: Mathematical optimization in Banach spaces

Let X and Y be real Banach spaces. For

F : X → R Fréchet-differentiable functional,

g : X → Y continuously Fréchet-differentiable,

we consider the following mathematical program:

(5.7) min{F (x) ; g(x) ∈M, x ∈ C},

where C is a closed convex subset of X and M a closed cone in Y with vertex at 0.

We suppose that problem (5.7) has an optimal solution x̂, and we introduce the

conical hulls of C − {x̂} and M − {y}, respectively, by

C(x̂) = {x ∈ X ; ∃β > 0, ∃ c ∈ C, x = β(c− x̂)},

M(y) = {z ∈ Y ; ∃λ > 0, ∃ ζ ∈M, z = ζ − λy}.

The main result concerning the existence of a Lagrange multiplier for (5.7) is given

in the next theorem.
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Theorem 5.1 ([22]). Let x̂ be an optimal solution of problem (5.7) satisfying the

following constraints qualification:

(5.8) g′(x̂) · C(x̂)−M(g(x̂)) = Y.

Then there exists a Lagrange multiplier µ∗ ∈ Y∗ such that

〈µ∗, z〉Y∗,Y > 0 ∀ z ∈M,(5.9)

〈µ∗, g(x̂)〉Y∗,Y = 0,(5.10)

F ′(x̂)− µ∗ ◦ g′(x̂) ∈ C(x̂)+,(5.11)

where A+ = {x∗ ∈ X ∗ ; 〈x∗, a〉X ∗,X > 0 for all a ∈ A}, Y∗ and X ∗ are the topological

dual spaces of Y and X , respectively, and (µ∗ ◦ g′(x̂))d = 〈µ∗, g′(x̂)d〉Y∗,Y for all

d ∈ X .
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